СИСТЕМИ ЛІНІЙНИХ РІВНЯНЬ
1. Основні поняття і теореми
Постановка задачі. Потрібно знайти значення х1, х2, … , хn , що задовольняють таким співвідношенням:
.Тут aij (i = 1, 2, … , m; j = 1, 2, … , n) і bk (k = 1, 2, … , m) – задані числа.
При цьому:
; ; .Матриця А називається головною матрицею системи, вектор b – вектором-стовпцем правих частин, вектор x – вектором-стовпцем невідомих.
Використовуючи ці позначки, можна систему записати в матричній формі: Ах = b.
Якщо b1 = b2 = ¼ = bm = 0, то система рівнянь називається однорідною. Якщо хоча б одне з bk (k = 1, 2, ¼ , m) відмінне від нуля, то система називається неоднорідною.
.Матриця
називається розширеною матрицею системи.Якщо система має хоча б один розв’язок, то вона називається сумісною.
При цьому система, що має єдиний розв’язок, називається визначеною, а більше одного розв’язку – невизначеною.
Якщо система не має розв’язків, то вона називається несумісною.
При розв’язуванні систем лінійних рівнянь має бути знайдена відповідь на три запитання:
А. Чи сумісна система?
В. Чи визначена система?
С. Як знайти розв’язок (чи розв’язки) системи, якщо вони існують?
Правило Крамера. Якщо неоднорідна система рівнянь невироджена (detА ¹ 0), то система визначена, тобто має єдиний розв’язок, і його можна знайти за формулами Крамера:
(k = 1, 2, … , n) де Dk – визначник матриці, яку можна одержати, якщо в матриці А системи k-й стовпець замінити на стовпець вільних членів.Ранг матриці. З розв’язуванням систем рівнянь безпосередньо пов'язане поняття рангу матриці. Ранг матриці – це найвищий порядок її мінора, відмінного від нуля.
Для того щоб знайти ранг матриці, важливо орієнтуватися в тому, які перетворення з матрицею можна робити, не змінюючи при цьому її ранг:
1) транспонування;
2) перестановка двох рядків (стовпців);
3) множення всіх елементів рядка (або стовпця) на число a¹ 0;
4) додавання до всіх елементів рядка (стовпця) відповіднихелементів іншого рядка (стовпця);
5) вилучення нульового рядка (стовпця);
6) викреслення рядка (стовпця), що є лінійною комбінацією інших рядків (стовпців).
Однорідні системи. Розглядається однорідна система лінійних рівнянь з n невідомими: Ах = 0.
Якщо rangА = n (detА¹ 0), то система визначена і має тільки тривіальний розв’язок: x1 = x2 = … = xn = 0.
Якщо rangА < n (detА = 0), то система має не тільки тривіальні розв’язки. При цьому всі розв’язки однорідної системи рівнянь утворюють лінійний простір L і dim L = n – rangА.
Щоб знайти базис простору розв’язків однорідної системи рівнянь, треба:
1.Знайти базисний мінор матриці А.
2.Якщо рядок не входить до базисного мінора, то рівняння, яке йому відповідає, є лінійною комбінацією інших рівнянь, і його можна не брати до уваги.
3.Якщо стовпець не входить у базисний мінор, то невідома з відповідним номером призначається вільною. Усього знайдеться (n – rang A) вільних невідомих.
4.Нехай вільні невідомі хr+1, хr+2, … , хn. Якщо дати вільним невідомим довільні значення, то одержимо неоднорідну систему рівнянь відносно хr+1, хr+2, … , хn, у якої визначник не дорівнює нулю, і, отже, система має єдиний розв’язок.
5.Дамо вільним невідомим значення (1, 0, 0, 0, … , 0), потім (0, 1, 0, 0, … , 0) і т. д. Розв’язуючи системи, що утворюють, одержимо відповідно вектори
. Ці вектори й утворюють базис простору L розв’язків однорідної системи лінійних рівнянь.6.Загальний розв’язок лінійної системи однорідних рівнянь у цьому випадку є лінійною комбінацією базисних векторів:
.Неоднорідні системи. Теорема Кронекера – Капеллі: система неоднорідних лінійних рівнянь Ах = b сумісна тоді і тільки тоді, коли rangА = rang
.При цьому якщо rangА = rang
= n, то система має єдиний розв’язок і він може бути знайдений за правилом Крамера.Якщо rangА = rang
<n, то система має нескінченно багато розв’язків, які утворюють лінійний многовид. При цьому підпростір зсуву – це простір L розв’язків однорідної системи рівнянь, і його базис можна побудувати способом, який було розглянуто вище. Вектор зсуву – це частинний розв’язок неоднорідної системи рівнянь. і він може бути знайдений, якщо в неоднорідній системі вільні невідомі покласти рівними деяким довільним значенням (наприклад, нульовим).Загальний розв’язок неоднорідної системи – це загальний розв’язок відповідної однорідної системи плюс деякий частинний розв’язок неоднорідної системи. Останнє твердження можна записати через абревіатури відповідних термінів: З.Р.Н.С. = З.Р.О.С. + Ч.Р.Н.С.
Обернена матриця. Запишемо систему в матричному вигляді Ах = b. Якщо detА¹ 0 (така матриця А називається невиродженою), то для матриці А існує матриця А–1 така, що А–1А = АА–1 = Е.Така матриця називається оберненою до матриці А, і розв’язок системи можна записати за допомогою оберненої матриці у вигляді: А–1Ах = А–1b Þх = А–1b.
Таким чином, у випадку існування оберненої матриці А–1розв’язок системи має вигляд: х = А–1b.
Як же знайти обернену матрицю А–1 до невиродженої матриці А?
I спосіб.
1) Складемо матрицю Аik з алгебраїчних доповнень до елементів аik матриці А;
2) транспонуємо матрицю з алгебраїчних доповнень;
3) кожен елемент матриці, що утворилась, ділимо на detА.
В результаті маємо обернену матрицю – А-1.
II спосіб.
1) Запишемо матрицю А, а праворуч від неї, через вертикальну риску, –одиничну матрицю Е. Одержимо матрицю яка має n рядків та 2n стовпців;
2) у матриці, що утворилась, за допомогою застосування до рядків (і тільки до рядків) перетворень, що не змінюють ранг матриці, утворимо на місці матриці А одиничну матрицю.
На місці одиничної матриці тепер стоїть А–1.
III спосіб. Праворуч від матриці припишемо одиничну матрицю Е, а знизу припишемо матрицю (–Е). У правому нижньому куті поставимо нульову матрицю. Використовуючи операції тільки над рядками матриці, що утворилась, на місці матриці (–Е) утворимо нульову матрицю. Тоді у правому нижньому куті буде стояти А–1.
IV спосіб. Для обернення матриці, що має блокову структуру, тобто матриці вигляду:
, де А – квадратна матриця порядку n´n, а D – квадратна матриця q´q, справедливі дві формули Фробеніуса:1.Перша формула Фробеніуса (якщо detА¹ 0):
, де H = D – CA–1B.2.Друга формула Фробеніуса (якщо detD¹ 0):
, де K = A – BD–1C.2. Контрольні питання і завдання
1. Що таке ранг матриці і її базисний мінор? Чи визначаються вони однозначно?
2. Знайти ранг і всі базисні мінори матриці:
.3. Як пов'язані ранг матриці і вимірність лінійної оболонки її рядків.
4. Чому дорівнює вимірність простору розв’язків однорідної системи лінійних рівнянь, якщо в системі 10 рівнянь, 16 невідомих і ранг матриці системи дорівнює 6?
5. Чи утворює множина розв’язків неоднорідної системи лінійний простір? Яка з властивостей лінійного простору не виконується?
6. Згадайте визначення лінійного многовиду. Що називається його базисом і вимірністю?
7. Як визначається вектор зсуву для лінійного многовиду, що є множиною розв’язків неоднорідної системи?
3. Приклади розв’язування задач
Задача 1. Знайти ранг матриці
.Розв’язання. Насамперед відзначимо, що четвертий рядок матриці є сумою другого і третього рядків і тому при вилученні цього рядка ранг матриці не зміниться.
1.Відкинемо четвертий рядок.
2.З другого і третього рядків матриці віднімемо перший рядок, помножений, відповідно, на 2 та 3.
3.В отриманій матриці з третього рядка віднімемо другий, помножений на 2.
Одержимо ланцюжок перетворень:
лінійний рівняння матриця
.У матриці, що утворилась, мінор, який стоїть в перших трьох стовпцях, не дорівнює нулю. Отже, ранг вихідної матриці дорівнює 3 і мінор 3-го порядку, що стоїть в перших трьох стовпцях, є базисним мінором матриці А.
Задача 2. Знайти матрицю, яка є оберненою до матриці