Смекни!
smekni.com

Властивості лінійних операторів та їх застосування при розв’язанні задач. Матриця лінійного оператора (стр. 10 из 10)


,
,
,

Розв’язання: За означенням матриці лінійного перетворення

,
. Знаходимо образи базисних векторів і обчислюємо їх координати в заданому базисі:

Розташувавши отримані координати образів за стовпчиками отримаємо матрицю лінійного перетворення:

.

Приклад 4. Лінійне перетворення

в базисі
має матрицю

A=

Знайти матрицю цього ж перетворення в базисі: e

,
,
,
+
.

Розв’язання: Формула зв’язку між векторами старого і нового базисів у матричному записі має вигляд:

Обернену матрицю знайдемо за допомогою приєднаної:

Підставляємо отримані значення в формулу, отримаємо:

.

Приклад 5. Знайти власні значення і власні вектори лінійного перетворення, заданому в деякому базисі матрицею:

.

Розв’язання: Складаємо характеристичне рівняння і розв’язавши його знаходимо власні числа:

Розв’язуємо її методом Гауса, для цього приводимо матрицю до східчастого вигляду:

Складаємо однорідну систему рівнянь для визначення власних векторів:

Оскільки максимальна кількість лінійно незалежних власних векторів менша за вимірність простору, то власні вектори не утворюють базис простору і таким чином матриця не діагоналізуєма.

Приклад 6. З’ясувати, яку з матриць лінійних перетворень можна привести до діагонального виду шляхом переходу до нового базису. Знайти цей базис і відповідну йому матрицю:

Розв’язання: Складаємо характеристичне рівняння і розв’язавши його знаходимо власні числа:

Розв’язуємо її методом Гауса, для цього приводимо матрицю до східчастого вигляду:

A=

Власні вектори мають вигляд:

.

,

Формула зв’язку між векторами старого і нового базисів у матричному записі має вигляд:


.

Матриця діагоналізована.

Приклад 7. З’ясувати, яку з матриць лінійних перетворень можна привести до діагонального виду шляхом переходу до нового базису. Знайти цей базис і відповідну йому матрицю:

Розв’язання: Складаємо характеристичне рівняння і розв’язавши його знаходимо власні числа:

Розв’язуємо її методом Гауса, для цього приводимо матрицю до східчастого вигляду:

A=

A=

Матриця не може бути діагоналізованою, так як а.к.=г.к.=1.

Висновки

В даній курсовій роботі розглянуто базові властивості лінійних операторів, поняття матриці лінійного оператора та питання зв’язку матриць оператора у різних базисах. Крім того, до роботи включені питання діагоналізіруємості матриці оператора, які пов’язані з існуванням базису, що складається з власних векторів оператора. За усіма розглянутими теоретичними питаннями зроблена підборка задач, яка їх ілюструє та допомагає детально розібратися в теоретичному матеріалі.

оператор вектор лінійний матриця базис


Перелік посилань

1. Курош А.Г. Курс вищої алгебри. – М.: Наука, 1968. – 331 с.

2. Кострикін А.И., Манін Ю.И. Лінійна алгебра і геометрія. – М.: Наука, 1986. – 304 с.

3. Проскуряков І. В. Збірник задач з лінійної алгебри. – М.: Наука, 1974. – 384 с.