Покажемо тепер, що множина
для довільного лінійного простору є підпростором лінійного простору . Нехай і – два довільно взятих вектори множини . Так як , то . Нехай – довільне число. Так як , то . Таким чином, лінійні операції над будь-якими векторами множини дають вектори тієї ж множини, тобто – підпростір простору .Аналогічним способом доводиться, що множина
також є підпростором простору .Розмірність підпростору
називається дефектом оператора . Розмірність підпростору називається рангом оператора . Для рангу оператора використовується одне з позначень або , для позначення дефекту оператора використовується символ .Теорема 2.4. Для будь-якого лінійного оператора
із сума розмінностей його ядра і образу дорівнює розмірності простору , тобто або .Теорема 2.5. Нехай
і - два яких-небудь підпростори - мірного простору , причому . Тоді існує такий лінійний оператор , що , а .Доведення. Нехай
- розмірність підпростору , тобто , а – розмірність підпростору . За умовою теореми . Виберемо базис - мірного простору так, щоб векторів було базисом підпростору . В підпросторі візьмемо який-небудь базис . Розглянемо лінійний оператор , який перетворює вектори простору у вектори , а кожний з векторів у нульовий вектор, тобто .Оператор
довільний вектор простору приводить у вектор , який належить підпростору простора . Звідси випливає, що , тобто підпростір містить образ оператора . Щоб довести, що , треба за означенням множини показати, що будь-який вектор підпростору , має прообраз у просторі . Розглянутий лінійний оператор перетворює вектори простору у вектори , тому довільно взятий вектор підпростору можна представити у вигляді . В силу лінійності оператора и також того, що , вектор можна представити також і в такій формі: , де – довільно вибрані комплексні числа. Останній вираз для довільного вектору означає, що він є образом вектора простору . Таким чином, .