Министерство образования и науки Российской Федерации
Новосибирский государственный технический университет
Кафедра экономической информатики
Курсовая работа
по дисциплине «Численные методы»
на тему: «Метод квадратных корней для симметричной матрицы при решении СЛАУ»
Новосибирск, 2010
Содержание
Введение
1. Математическая постановка задачи
2. Описание программного обеспечения
3. Описание тестовых задач
4. Анализ результатов. Выводы
Заключение
Список использованной литературы
В жизни, очень часто приходится описывать состояние различных объектов, в том числе и экономических с помощью математических моделей. После того, как объект описан такой моделью, очень часто необходимо найти его состояние равновесия.
Именно тогда, чтобы найти это состояние, приходится решать систему алгебраических уравнений. В нашем случае система состоит из n линейных уравнений с n неизвестными, и ее можно описать так:
Также данную систему можно записать и в матричном виде:
Тогда мы будем иметь матрицу коэффициентов А:
,столбец свободных членов уравнений f:
и столбец неизвестных х:
.Чтобы данная СЛАУ имела единственное решение, нужно, чтобы определитель матрицы коэффициентов А не был равен нулю (det(A))¹0.
Данную систему можно решить многими методами. Например, методом Гаусса. Решение этой системы методом Гаусса потребует выполнить
действий,где n – число неизвестных в уравнении. А это довольно таки трудоемко, особенно при больших порядках числа n.
Еще одним точным методом для решения данных СЛАУ является рассматриваемый в данной работе метод квадратных корней для симметричной матрицы А.
Изучать данный метод мы будем следующим образом. Сначала рассмотрим математическую постановку задачи для метода квадратных корней при решении СЛАУ. В данном разделе будет полностью описана математическая модель метода. Затем рассматривается разработанная реализация данного метода в среде MatLab 7.0. После того, как метод будет реализован, можно провести анализ точности этого метода. Анализ будет основываться на исследовании влияния мерности матрицы А, ее обусловленности, разреженности на точность полученного решения. По результатам исследования будет приведен график зависимости точности полученного решения от мерности матрицы А.
метод решение корень симметричная матрица
1. Математическая постановка задачи
Метод квадратных корней используется для решения линейной системы вида Ах=f(1.1), в которой матрица А является симметричной, т.е. аij=aji , где (i, j = 1, 2, …, n).
Данный метод является более экономным и удобным по сравнению с решением систем общего вида. Решение системы осуществляется в два этапа.
Прямой ход. Представим матрицу А в виде произведения двух взаимно транспонированных треугольных матриц:
А = Т¢ Т, (1.2)
где
, а .Перемножая матрицы T¢ и T и приравнивая матрице A, получим следующие формулы для определения tij:
(1.3)После того, как матрица Т найдена, систему (1.1) заменяем двумя эквивалентными ей системами с треугольными матрицами
T¢y = b, Tx = y. (1.4)
Обратный ход. Записываем в развернутом виде системы (1.4):
(1.5) (1.6)И из этих систем (1.5) и (1.6) последовательно находим
(1.7)При вычислениях применяется обычный контроль с помощью сумм, причем при составлении суммы учитываются все коэффициенты соответствующей строки.
Заметим, что при действительных aij могут получиться чисто мнимые tij. Метод применим и в этом случае.
Метод квадратных корней дает большой выигрыш во времени по сравнению с другими методами (например, методом Гаусса), так как, во-первых, существенно уменьшает число умножений и делений (почти в два раза для больших n), во-вторых, позволяет накапливать сумму произведений без записи промежуточных результатов.
Всего метод квадратных корней требует
операций умножения и деления (примерно в два раза меньше, чем метод Гаусса), а также n операций извлечения корня.
Метод квадратных корней был реализован через функцию function [e,x]=mkk(a,f) , с входными переменными а и f и выходными e и х, где
а – матрица коэффициентов А,
f – столбец свободных членов,
х – столбец найденных решений,
е – столбец ошибок.
Столбец ошибок вычисляется, как Е=А*х-f.
Текст функции на языке MatLab:
function [e,x]=mkk(a,f)
f=f'; %столбец f переводим в строку
n=size(a,1); % вычисляем мерность матрицы А
if (a==a')
if (det(a)~=0) % проверяем, чтобы система имела единственное решение
if (size(f',1)==n) %проверяем соответствует ли мерность матрицы А мерности вектора f
t=zeros(n); %создаем матрицу элементов T и заполняем ее нулями
t(1,1)=sqrt(a(1,1)); % 1.3
for k=2:n
t(1,k)=a(1,k)/t(1,1);
end
for j=2:n
for i=2:n
if (i==j)
c=0;
for k=1:(i-1)
c=c+t(k,i)^2;
end
t(i,i)=sqrt(a(i,i)-c);
else
if (i<j)
c=0;
for k=1:(i-1)
c=c+t(k,i)*t(k,j);
end
t(i,j)=(a(i,j)-c)/t(i,i);
end
end
end
end
y=zeros(n,1); %1.7 создаемстолбецу
y(1)=f(1)/t(1,1);
for i=2:n
c=0;
for k=1:(i-1)
c=c+t(k,i)*y(k);
end
y(i)=(f(i)-c)/t(i,i);
end
x=zeros(n,1); %создаем столбец точных решений
e=zeros(n,1); % создаем столбец ошибок
x(n)=y(n)/t(n,n); %1.8 вычисляем вектор Х
for i=(n-1):-1:1
c=0;
for k=(i+1):n
c=c+t(i,k)*x(k);
end
x(i)=(y(i)-c)/t(i,i);
e=a*x-f';
end
else
error('Внимание! Ошибка! Размерность матрицы А не соответствует размерности вектора F');
end
else
error('Внимание! Ошибка! Определитель матрицы А равен 0')
end
else
f=f*a';
a=a*a';
if (det(a)~=0) % проверяем, чтобы система имела единственное решение
ifsize(f',1)==n%проверяем соответствует ли мерность матрицы А мерности вектора f
t=zeros(n); %создаем матрицу элементов T и заполняем ее нулями
t(1,1)=sqrt(a(1,1)); % 1.3
for k=2:n
t(1,k)=a(1,k)/t(1,1);
end
for j=2:n
for i=2:n
if (i==j)
c=0;
for k=1:(i-1)
c=c+t(k,i)^2;
end
t(i,i)=sqrt(a(i,i)-c);
else
if (i<j)
c=0;
for k=1:(i-1)
c=c+t(k,i)*t(k,j);
end
t(i,j)=(a(i,j)-c)/t(i,i);
end
end
end
end
y=zeros(n,1);
y(1)=f(1)/t(1,1);
for i=2:n
c=0;
for k=1:(i-1)
c=c+t(k,i)*y(k);
end
y(i)=(f(i)-c)/t(i,i);
end
x=zeros(n,1);
x(n)=y(n)/t(n,n);
for i=(n-1):-1:1
c=0;
for k=(i+1):n
c=c+t(i,k)*x(k);
end
x(i)=(y(i)-c)/t(i,i);
end
else
error('Внимание! Ошибка! Размерность вектора F не соответствует размерности матрицы А');
end
else
error('Внимание! Ошибка! Определитель матрицы А равен 0');
end
end
После того, как функция была разработана, для ее отладки была составлена программа, где задавались матрица А, вектор fи откуда вызывалась написанная функция.
Программа имеет вид:
a=[1 0 0; 0 1 0; 0 0 1];
f=[7;8;9];
[e,x]=mkk(a,f)
Решение для данной программы выдано такое:
e =
0
0
0
x =
7
8
9
Как видим, решение правильное.
Начнем исследование метода квадратных корней. Для начала исследуем влияние мерности матрицы А на точность решения.
Для этого будем последовательно решать СЛАУ, каждый раз увеличивая мерность А. Для этого составим такую программу, которая
а) решит четыре СЛАУ с разными мерностями матрицы А,
б) посчитает четыре точности полученного решения по формуле E1=max |Ei|,
в) посчитает четыре точности полученного решения по формуле
,в которых i – количество решенных уравнений
г) построит два графика зависимости точностей полученного решения от мерности матрицы А.
Текст программы:
e1=0;
e2=0;
a=[1 0.42;.42 1]
f=[0.3;0.5]
[e,x]=mkk(a,f)
e1=max(abs(e))
e2=sqrt(sum(power(e,2)))
a=[1 0.42 .54;.42 1 .32; .54 .32 1;]
f=[0.3;0.5;.7]
[e,x]=mkk(a,f)
e1=[e1 max(abs(e))]
e2=[e2 sqrt(sum(power(e,2)))]
a=[1 0.42 .54 .66;.42 1 .32 .44; .54 .32 1 .22; .66 .44 .22 1]
f=[0.3;0.5;.7;.9]
[e,x]=mkk(a,f)
e1=[e1 max(abs(e))]
e2=[e2 sqrt(sum(power(e,2)))]
a=[1 0.42 .54 .66 .53;.42 1 .32 .44 .45; .54 .32 1 .22 .41; .66 .44 .22 1 .25; .53 .45 .41 .25 1;]
f=[0.3;0.5;.7;.9;.6]
[e,x]=mkk(a,f)
e1=[e1 max(abs(e))]
e2=[e2 sqrt(sum(power(e,2)))]
mernost=[2 3 4 5];
plot(mernost,e1);
pause;
plot(mernost,e2);
pause
Результат работы программы:
>> head5
a =
1.0000 0.4200
0.4200 1.0000
f =
0.3000
0.5000
e =
0
0
x =
0.1093
0.4541
e1 =
0
e2 =
0
a =
1.0000 0.4200 0.5400
0.4200 1.0000 0.3200
0.5400 0.3200 1.0000
f =
0.3000
0.5000
0.7000
e =
1.0e-016 *
0.5551
0
0
x =
-0.2405
0.3737
0.7103
e1 =
1.0e-016 *
0 0.5551
e2 =
1.0e-016 *
0 0.5551
a =
1.0000 0.4200 0.5400 0.6600
0.4200 1.0000 0.3200 0.4400
0.5400 0.3200 1.0000 0.2200
0.6600 0.4400 0.2200 1.0000
f =
0.3000
0.5000
0.7000
0.9000
e =
1.0e-015 *
-0.0555
0
-0.2220
0
x =
-1.2578
0.0435
1.0392
1.4824
e1 =
1.0e-015 *
0 0.0555 0.2220
e2 =
1.0e-015 *
0 0.0555 0.2289
a =
1.0000 0.4200 0.5400 0.6600 0.5300
0.4200 1.0000 0.3200 0.4400 0.4500
0.5400 0.3200 1.0000 0.2200 0.4100
0.6600 0.4400 0.2200 1.0000 0.2500
0.5300 0.4500 0.4100 0.2500 1.0000