Министерство науки и образования РФ
Кафедра экономической информатики
Факультет: Бизнеса
Преподаватель: Сарычева О. М.
Новосибирск, 2010
Содержание
1. Введение
2. Математическая постановка задачи и описание метода
3. Описание программного обеспечения
3.1 Общие сведения
3.2 Функциональное назначение программы
3.3 Вызов и загрузка программы
3.4 Входные данные
3.5 Выходные данные
3.6 Описание алгоритмов
3.6.1 Программный модуль metod1.m
3.6.2 Программный модуль metod2.m
3.7 Используемые программные и технические средства
4. Описание тестовых задач
5. Анализ результатов счета, выводы
6. Заключение
Приложения
Список литературы
1. Введение
В данной курсовой работе необходимо рассмотреть один из множества существующих итерационных методов - метод простой итерации для решения систем линейных алгебраических уравнений.
Прежде чем говорить о вышеуказанном методе, дадим краткую характеристику вообще итерационным методам.
Итерационные методы дают возможность найти решение системы, как предел бесконечного вычислительного процесса, позволяющего по уже найденным приближениям к решению построить следующее, более точное приближение. Привлекательной чертой таких методов является их самоисправляемость и простота реализации на ЭВМ. Если в точных методах ошибка в вычислениях, когда она не компенсируется случайно другими ошибками, неизбежно ведет к ошибкам в результате, то в случае сходящегося итерационного процесса ошибка в каком-то приближении исправляется в последующих вычислениях, и такое исправление требует, как правило, только нескольких лишних шагов единообразных вычислений. Итерационный метод, для того чтобы начать по нему вычисления, требует знания одного или нескольких начальных приближений к решению.
Условия и скорость сходимости каждого итерационного процесса существенно зависят от свойств уравнений, то есть от свойств матрицы системы, и от выбора начальных приближений.
2. Математическая постановка задачи и описание метода
2.1 Математическая постановка задачи
Исследовать метод простой итерации для решения систем линейных алгебраических уравнений, а именно: влияние способа перехода от системы F(x)=x к системе x=
(x) на точность полученного решения, скорость сходимости метода, время счета, число операций.2.2 Описание метода
Пусть дана система линейных алгебраических уравнений в виде Ax=b (2.2.1).
Пусть (2.2.1.) приведена каким-либо образом к виду x=Cx+f (2.2.2), где C - некоторая матрица, f - вектор-столбец. Исходя из произвольного вектора
x01x( 0 )= x02
x03
строим итерационный процесс x( k+1 )=Cx( k )+f(k=0,1,2,3,…) или в развернутой форме
x1 ( k+1 ) = c11 x1( k ) + c12 x2( k ) + …+ c1n xn( k ) + f1 ,(2.2.3)
xn ( k+1 ) = cn1 x1( k ) + cn2 x2( k ) + …+ 1nn xn( k ) + fn .
Производя итерации, получим последовательность векторов x( 1 ), x( 2),…, x( k ),… Доказано, что если элементы матрицы C удовлетворяют одному из условий
(j=1,2,…,n) (2.2.5),
то процесс итерации сходится к точному решению системы x при любом начальном векторе x(0), то есть
x= x( k ) .Таким образом, точное решение системы получается лишь в результате бесконечного процесса, и всякий вектор x(k) из полученной последовательности является приближенным решением. Оценка погрешности этого приближенного решения x(k) дается одной из следующих формул:
| xi- xi( k ) |
| xi( k ) - xi( k -1 )|, (2.2.4')если выполнено условие (2.2.4), или
| xi- xi( k ) |
| xi( k ) - xi( k -1 )|, (2.2.5')если выполнено условие (2.2.5). Эти оценки можно еще усилить соответственно так:
max | xi- xi( k ) |
| xi( k ) - xi( k -1 )|, (2.2.4'')или
| xi- xi( k ) | | xi( k ) - xi( k -1 )|. (2.2.5'')Процесс итераций заканчивают, когда указанные оценки свидетельствуют о достижении заданной точности.
Начальный вектор x( 0 ) может быть выбран, вообще говоря, произвольно. Иногда берут x( 0 )=f. Однако, наиболее целесообразно в качестве компонент вектора x( 0 ) взять приближенные значения неизвестных, полученные грубой прикидкой.
Приведение системы (2.2.1) к виду (2.2.2) можно осуществить различными способами. Важно только, чтобы выполнялось одно из условий (2.2.4) или (2.2.5). Ограничимся рассмотрением двух таких способов.
Первый способ. Если диагональные элементы матрицы А отличны от нуля, то есть
aii 0 ( i=1,2,…,n),
то систему (2.2.1) можно записать в виде
x1= (b1 - a12 x2 - … - a1n xn ),x2=
(b2 - a21 x1 - a23 x3 -… - a2n xn ),(2.2.6)xn=
(bn - an1 x1 - … - an n-1 xn-1 ).В этом случае элементы матрицы С определяются следующим образом:
(i j), cii=0,и тогда условия (2.2.4) и (2.2.5) соответственно приобретают вид
(i=1,2,… ,n), (2.2.7) (j=1,2,… ,n). (2.2.8)Неравенства (2.2.7), (2.2.8) будут выполнены, если диагональные элементы матрицы А удовлетворяют условию
(i=1,2,… ,n), (2.2.9)то есть если модули диагональных коэффициентов для каждого уравнения системы больше суммы модулей всех остальных коэффициентов (не считая свободных членов).
Второй способ позволяет записать систему (2.2.1) в виде
x1 = b1 - (a11 -1)x1 - a12 x2 - … - a1n xn ,x2 = b2 - a21 x1 -(a22 -1)x2 -… - a2n xn , (2.2.10)
xn = bn - an1 x1 - an2 x2 -… -(ann -1)xn .
и пояснений не требует.
3. Описание программного обеспечения
3.1 Общие сведения
Данное программное обеспечение представлено в виде двух основных программных модулей (файлы metod1.m и metod2.m) и четырех вспомогательных модулей (файлы system_a.m, system_b.m, x0.m и x_ok.m).
3.2 Функциональное назначение программы
Данное программное обеспечение предназначено для решения систем линейных алгебраических уравнений вида Ax=b методом простой итерации.
Программный модуль metod1.m содержит непосредственно алгоритм решения систем линейных алгебраических уравнений методом простой итерации, использующий первый способ перехода от системы вида F(x)=xк системе вида x=
(x) (см. п.2.2.).Программный модуль metod2.m также содержит непосредственно алгоритм решения систем линейных алгебраических уравнений методом простой итерации, но использующий второй способ перехода от системы вида F(x)=xк системе вида x=
(x) (см. п.2.2.).Вспомогательный модуль system_a.m содержит матрицу А исходной системы линейных алгебраических уравнений вида Ax=b.
Вспомогательный модуль system_b.m содержит столбец b исходной системы линейных алгебраических уравнений вида Ax=b.
Вспомогательный модуль x0.m содержит столбец начального приближения к точному решению исходной системы линейных алгебраических уравнений вида Ax=b.