Смекни!
smekni.com

Некоторые замечательные кривые (стр. 3 из 3)

Лемниската есть частный вид линии Кассини. Однако, хотя линии Кассини получили всеобщую известность с 1749 г., тождественность «восьмерки Кассини» с лемнискатой Бернули была уставновлена лишь в 1806 г. (итальянским математиком Саладини).

5.3 Построение

Можно применять общий способ построя линия Кассини, но нижеизложенный способ (К. Маклорена) и проще и лучше. Строим (см. рис.) окружность радиуса

с центром в точке F1 (или F2). Проводим произвольную секущую OPQ и откладываем на этой прямой в обе стороны от точки O отрезки OM и OM1, равные хорде PQ. Точка M опишет одну из петель лемнискаты, точка M1 – другую.

5.4 Особенности формы

Лемниската имеет две оси симметрии: прямую F1F2 (OX) и прямую OY

OX. Точка O – узловая; обе ветви имеют здесь перегиб. Касательные в этой точке составляют с осью OX углы
. Точки A1,A2 лемнискаты, наиболее удаленные от узла O (вершины лемнискаты), лежат на оси F1F2 на расстоянии
от узла.

5.5 Свойства нормали.

Подяоный радиус OM лемнискаты образует с нормалью MN угол

, вдвое больше полярного угла
:

.

Другими словами: угол

между осью OX и вектором NN' внешней нормали лемнискаты в точке M равен утроенному полярному углу точки M:

.

5.6 Построение касательной

Чтобы построить касательную к лемнискате в ее точке M, проводим полярный радиус OM и строим

. Перпендикуляр MT к прямой MN есть искомая касательная.

5.7 Задача

Написать уравнение лемнискаты Бернулли в прямоугольной системе координат (O – серидина отрезка F1F2) и в полярной системе координат (O – полюс).

Решение:

Пусть точка O – начало координат ; ось OX направлена по F1F2. Тогда Уравнение в прямоугольной системе координат:

.

Если O – полюс, OX – полярная ось, то уравнение в полярной системе:

.

Угол

изменяется в промежутках
и
.

Заключение

В данной работе мы рассмотрели некоторые замечательные кривые, изучили их способы построения, особенности формы и задачи, связанные с этими кривыми.

В параграфе 1 была рассмотрена строфоида, особенности её формы, стереометрическое образование и исторические сведения.

Во 2-м параграфе мы изучили циссоиду Диокла и некоторые формулы, связанные с ней.

В параграфе 3 узнали метод построения, особенности формы и исторические сведения о кривой, называемой «Декартов лист».

В 4-м параграфе рассмотрели улитку Паскаля. Её определение, построение, особенности формы, свойства нормали и построение касательной.

В параграфе 5 была изучена лемниската Бернулли: определение, построение, исторические сведения, особенности формы, свойства нормали и построение касательной.

А также при помощи задач узнали формулы кривых в прямоугольной декартовой и полярной системах координат.


Используемая литература:

1. Маркушевич А.И., Замечательные кривые, М., 1978 г., 48 стр. с ил.

2. Выгодский М.Я., Справочник по высшей математике, М.: АСТ: Астрель, 2008, 991 стр. с ил.

3. Атанасян Л.С. и Атанасян В.А., Сборник задач по геометрии. Учеб. пособие для студентов физ.-мат. фак. пед. ин-тов. Ч. I, М., "Просвещение", 1973, 256 с.

4. Гурова А.Э. Замечательные кривые вокруг нас. М, 1989

5. Маркушевич А.И. Замечательные кривые. - М, 1978

6. http://ru.wikipedia.org/wiki/Строфоида

7. http://ru.wikipedia.org/wiki/Лемниската_Бернулли

8. http://ru.wikipedia.org/wiki/Улитка_Паскаля