Смекни!
smekni.com

Оценка периметра многоугольника заданного диаметра (стр. 13 из 15)

Возможны два случая расположения вершин P, M, N пятиугольника FPMNT.

Рассмотрим первый случай, когда хотя бы одна из прямых РМ и MN пересекает дуги обеих окружностей

,
.

Из рисунка 2.1.3 видно, что периметр p рассматриваемого пятиугольника FPMNT меньше периметра пятиугольника FP1М1N1T, а так же меньше периметра Р1 шестиугольника FСZМ1N1T, где C середина дуги

(по лемме 2.1.1).

Таким образом, получаем: p< Р1 <4 sin150+1+

3,0819428.

Рассмотрим второй случай, когда прямые PM, MNпересекают дугу окружности

(рис. 2.1.4).

Из рисунка 2.1.4 видно, что периметр p рассматриваемого пятиугольника FPMNT меньше периметраP2 пятиугольника FP1М1N1T т.е.:


p< P2 <

+1+1
3,0466.

Известно, что периметр P3 правильного пятиугольника равен:

P3=

.

Таким образом, получаем, что периметр рассматриваемого пятиугольника FPMNT меньше периметра правильного пятиугольника диаметра 1.

Теорема доказана.

Теорема 2.1.3. В оптимальном пятиугольнике, по крайней мере, три диагонали равны 1.

Доказательство.

Пусть диагональ PT=1 (по теореме 2.1.2).

Проведем две окружности:

(T, PT=1) и
(P, PT=1) (рис. 2.1.5). Ясно, что все остальные вершины пятиугольника будут являться внутренними или граничными точками области ограниченной окружностями
,
и прямой РТ. Причем все три вершины не могут лежать по одну сторону от PT, т.к. PT это диагональ выпуклого пятиугольника (рис. 2.1.5).

Рассмотрим первый случай, когда прямая MN пересекает дуги обеих окружностей

и
(рис. 2.1.5).

Допустим, что диагональ FM<1 и точка М отлична от точки M’, тогда сместив точку М в близкую точку М’’ вдоль прямой ТМ’, получим пятиугольник большего периметра, т.е. пятиугольник FPMNT не является оптимальным. Можно поэтому считать, что у оптимального пятиугольника хотя бы одна из диагоналей FM, ТM’ равна 1.

Аналогично, хотя бы одна из диагоналей FN, PN’ равна 1.

Точно так же рассматривается второй случай, когда прямая MN пересекает только одну из окружностей

,
(рис. 2.1.6).

Теорема доказана.

Теорема 2.1.4. В оптимальном пятиугольнике, по крайней мере, четыре диагонали равны 1.

Доказательство.

В силу теоремы 2.1.3 рассмотрим пятиугольник MNTFP у которого три диагонали равны единице, при этом возможны два случая:

1) TP= MF=NF=1;

2) TP= MT=NP=1 (рис. 2.1.7).

Рассмотрим первый случай.

Проведем три окружности:

окружность

с центром в точке N и радиуса NF=1;

окружность

с центром в точке M и радиуса MF=1;

окружность

с центром в точке F и радиуса FM=FN=1.

Обозначим точки пересечения окружностей

и
через L, а окружностей
и
через K (рис. 2.1.7).

Ясно, что вершины P и T пятиугольника с одной стороны будут лежать вне треугольника

MNF, т.к. пятиугольник выпуклый, а с другой стороны должны лежать в области ограниченной окружностями
,
и
(область закрашенная на рисунке 2.1.7), т.к. в противном случае, например, если точка Т будет лежать вне этой области, то диагональ МТ >1, а это невозможно т.к. диаметр пятиугольника равен 1. При этом точка P не может лежать на дуге
MK , а точка Т не может лежать на дуге
NL, так как в противном случае мы получим, что сторона пятиугольника равна 1, что невозможно по теореме 2.1.2.

Допустим от противного, что NP<1 и MT<1.

Проведем два эллипса:

l1 с фокусамиM, F , проходящий через точку P;

l2 с фокусами N, F , проходящий через точку T.

Возможны два случая:

а) касательные m

в точке P и m
в точке T к эллипсам l1 иl2 соответственно перпендикулярны отрезку PT (рис. 2.1.7).

Подвинем отрезок PТ параллельно самому себе на небольшое расстояние, так, что бы новый отрезок P’Т’ (P’

m
, Т’
m
) остался в закрашенной области (или на границе) (рис. 2.1.7).

В результате, длина отрезка PТ не изменится, а длина диагоналей NP’и MT’ не станет больше 1. При этом периметр пятиугольника MP’FT’N больше периметра исходного пятиугольника MPFTN.


Значит, пятиугольник MPFTN не может быть оптимальным.

б) Одна из касательных m

в точке P или m
в точке T к эллипсам l1 иl2 соответственно не перпендикулярна отрезку PT.

Допустим, что касательная m

в точке P к эллипсу l1 не перпендикулярна отрезку PT. Проведем окружность
с центром в точке T и радиусом PT=1 (рис. 2.1.8).

Подвинем точку P по дуге окружности

, которая "выходит" из эллипса l1 и получим точку P’. При этом длина PT не изменится, а точку P мы подвинем на такое расстояние, что бы точка P’ лежала в закрашенной области. А это значит, что диагональ NP’ не станет больше 1. Периметр полученного таким образом пятиугольника MP’FTN больше периметра исходного пятиугольника MPFTN.

Значит, пятиугольник MPFTN не может быть оптимальным.

Таким образом, в оптимальном пятиугольнике, покрасней мере одна из диагоналей NP, MT равна единице.

Теперь рассмотрим второй случай.

2) TP= MT= NP=1 (рис. 2.1.9).

Заметим, что вершина F лежит внутри области ограниченной отрезком РТ и дугами

PSи
ST.

Предположив, что NF<1 и MF<1 и заменив точку F близкой точкой F’ (см. рис. 2.1.9), мы получим, что РF+FТ<PF’+F’T, т.е. периметр пятиугольника MPF’TN больше периметра исходного пятиугольника MPFTN.


Значит, пятиугольник MPFTN не может быть оптимальным.

Таким образом, в оптимальном пятиугольнике, покрасней мере одна из диагоналей NF, MF равна единице.

Теорема доказана.

2. Отыскание оптимального пятиугольника

Теорема 2.2.1. Оптимальным пятиугольником является правильный пятиугольник.

Доказательство.

Рассмотримпятиугольник MPFTN у которого четыре диагонали равны 1 (по теореме 2.1.4 только такой пятиугольник может быть оптимальным).

Пусть

PN=MT=FM=FN=1, PT=c(рис. 2.2.1).