Хотя ответ в основной изопериметрической задаче и кажется очевидным, строгое ее решение содержит определенные трудности.Швейцарский геометр Штейнер, впервые, доказавший что только круг может служить решением изопериметрической задачи предположил, что фигура наибольшей площади существует. Однако это рассуждение не является строгим. [3, 30]
Рассмотрим общие свойства изопериметрических фигур максимальной площади, для множества фигур на плоскости с данным периметром р.
Свойство 1.2.1. Всякая максимальная фигура выпукла.
Доказательство.
Пусть хорда А1В1, соединяющая точки А1, В1нашей фигуры, не лежит целиком внутри нее. Тогда, очевидно, некоторый отрезок этой хорды, скажем АВ,лежит весь (кроме концов) вне фигуры. Можно считать поэтому, что дана фигура с периметром АаВС,равным р,не содержащая хорду АВ (рис. 1.2.1). Заменим дугу а хордой АВ.Периметр при такой замене уменьшится, а площадь увеличится на часть АаВ.Построим теперь фигуру, подобную построенной фигуре А ВС, но с периметром, равным периметру первоначальной фигуры АаВС.У новой фигуры площадь будет больше, чем у второй (поскольку коэффициент подобия больше единицы), и подавно больше, чем у первоначальной.
Свойство доказано. [5, 24]
Свойство 1.2.2. Всякая хорда максимальной фигуры с периметром р, делящая пополам ее периметр, обязательно делит ровно пополам и ее площадь.
Доказательство.
Действительно, пусть у фигуры АВСDс периметром р хорда АС делит периметр пополам (рис. 1.2.2). Обозначим через S1, площадь фигуры AВС,а через S2 - площадь АDС.Предположим, что S1>S2. Построим тогда новую фигуру АВСEА,заменив линию АDС линией АЕС, симметричной с АВС относительно хорды АС.Новая фигура АВСЕА, имея прежний периметр, имеет площадь больше площади первоначальной фигуры, так как площадь новой фигуры равна 2S1, а площадь первоначальной равна S1+S2, в то время как по предположению S1>S2 и, следовательно, 2S1>S1+S2. Поэтому фигура АВСDне является, вопреки предположению, максимальной. Это доказывает, что предположение S1> S2 неверно. Аналогично доказывается, что и предположение S1<S2 приводит к противоречию. Окончательно, S1= S2.
Свойство доказано. [3, 31]
Так как при преобразовании подобия площадь плоской фигуры и квадрат ее периметра увеличиваются или уменьшаются в одинаковое число раз и, следовательно, отношение площади к квадрату периметра не меняется, то задачу можно сформулировать следующим образом:
Среди всех плоских фигур найти фигуру, для которой отношение площади к квадрату периметра было бы наибольшим.[8, 67]
В задаче 1.2.5 доказывается, что если выпуклая фигура Ф отлична от круга, то существует фигура
, имеющая тот же самый периметр, что и Ф, и большую площадь. При этом в задаче 1.2.5 утверждается, что такой фигурой может быть только круг. Таким образом, может показаться, что задача 1.2.5 полностью решает изопериметрическую задачу. Однако, хотя это заключение и является верным (см. задачу 1.2.6), пока мы не имеем оснований делать это заключение с полной определенностью: задача 1.2.5 подсказывает ответ изопериметрической задачи, но не дает ее решения. Яркий пример, показывающий, что существование решения надо доказывать,доставляет следующая модификация парадокса Перрона:Теорема 1.2.1.Среди всех квадратов наибольшую площадь имеет квадрат со стороной 1.
Доказательство
Пусть наибольшую площадь имеет квадрат со стороной a. Рассмотрим два случая: а<1 и a>1. Если а<1, то а2<1 и площадь квадрата со стороной а не является наибольшей (она меньше площади единичного квадрата). Если же а>1, мы возьмем квадрат со стороной b=а2. Тогда b>а (так как а> 1), и площадь квадрата со стороной bбудет b2, притом b2 >а2 (так как b>а). Значит, квадрат со стороной а не имеет наибольшую площадь, вопреки предположению.
Теорема доказана. [5, 23]
В доказательстве этой теоремы допущена ошибка, а именно не доказано, что существует квадрат наибольшей площади.
Рассмотрим решение задачи Дидоны, пользуясь изопериметрическим свойством круга (см. задачу 1.2.6).
Пусть AВС и А’В’С’ представляют собой полукруг и какую-нибудь другую фигуру, удовлетворяющую всем условиям задачи. Прибавляя к этим фигурам фигуры АDС и А’D’С’, симметричные с первыми относительно осей АС и А’С’,составим две новые фигуры: круг АВСDи отличную от круга фигуру А’В’С’D’,периметры которых равны 2l. Согласно основной теореме об изопериметрах, площадь круга АВСDбольше площади фигуры А’В’С’D’.Поэтому площадь полукруга АВС больше площади фигуры А’В’С’ и полукруг АВС будет решением задачи Дидоны. [5, 25]
2.1 Задачи
Задача №1.2.1.
а) Докажите, что из всех треугольников с двумя заданными сторонами наибольшую площадь имеет тот, у которого эти стороны взаимно перпендикулярны.
б) Докажите, что из двух неравных треугольников, имеющих равные основания и равные углы при противолежащей вершине, большую плошать и больший периметр имеет тот, у которого разность углов при основании меньше (разность боковых сторон меньше); из всех треугольников с данным основанием и данным углом при противолежащей вершине наибольшую площадь и наибольший периметр имеет равнобедренный.
в) Докажите, что из всех параллелограммов с данным острым углом и данным периметром наибольшую площадь имеет ромб.
г) Докажите, что из двух неравных треугольников с одинаковыми основаниями и одинаковыми периметрами большую площадь имеет тот, у которого меньше разность углов при основании (меньше разность боковых сторон); из всех треугольников с данным основанием и данным периметром наибольшую площадь имеет равнобедренный.
д) Докажите, что из всех трапеций с данными основаниями и данным периметром наибольшую площадь имеет равнобокая. [8, 67]
Задача №1.2.2 .
а) Докажите, что из всех треугольников с данным периметром наибольшую площадь имеет равносторонний треугольник.
б) Докажите, что из всех четырехугольников с данным периметром наибольшую площадь имеет квадрат. [7, 335]
Задача №1.2.3.
а) Докажите, что среди всех n-угольников, вписанных в данную окружность, правильный имеет наибольшую площадь.
б) Докажите, что среди всех n-угольников, вписанных в данную окружность, правильный имеет наибольший периметр. [6, 63]
Задача №1.2.4 .
а) Докажите, что из всех выпуклых четырехугольников с данными углами и данным периметром наибольшую площадь имеет четырехугольник, в который можно вписать окружность
б) Докажите, что из всех выпуклых n-угольников с данными углами и данным периметром наибольшую площадь имеет n-угольник, в который можно вписать окружность. [8, 68]
Задача №1.2.5. Докажите, что если выпуклая фигура Ф отлична от круга, то существует фигура
, имеющая тот же самый периметр, что и Ф, и большую площадь. [8, 71]Задача №1.2.6. Докажите, что круг имеет большую площадь, чем каждая другая фигура того же периметра. [6, 67]
2.2 Решения
Задача №1.2.1
а) Утверждение задачи совершенно очевидно (см. рис. 1.2.3)
Рис. 1.2.3
б) Наложим два треугольника, удовлетворяющих условию задачи, друг на друга, чтобы их основания совпали, вершины С и С’ были расположены по одну сторону от общего основания АВ и чтобы одновременно выполнялись следующие условия:
САВ< СВА, С’АВ< С’ВА (рис. 1.2.4, а)
В этом случае вершины С и С’ треугольников будут расположены на дуге окружности ВС’СА,вмещающей угол АСВ,равный углу АС’В (по условию задачи).Из рис. 1.2.4, а)сразу видно, что вершина треугольника АВС,имеющего меньшую разность углов при основании, чем треугольник АВС’,расположена ближе к середине дуги ВС’СА,откуда следует, что высота
АВС больше высоты АВС’, и, следовательно, S АВС>S АВС’.Нам остается еще доказать, что:
СА — СВ < С’А— С’В;
и СА+СВ >С’А+С’В.
Отложим на стороне СА отрезок СD=СВ и на стороне С’А отрезок С’D’= С’В и соединим D и D’ с В (рис. 1.2.4,а).Так как углы АDВ и АD’Bэтовнешние углы равнобедренных треугольников BCD и BC’D’ то: