Второе решение
Пусть АВС—неравносторонний треугольник, АВ— его большая сторона (или одна из двух больших сторон) (рис. 1.2.8, а).
Рис. 1.2.8
Равнобедренный треугольник АВС’,имеющий тот же периметр, что и треугольник АВС,и то же основание АВ (рис. 1.2.8, а), в силу задачи 1.2.1 г) имеет не меньшую площадь, чем треугольник АВС.Построим теперь треугольник АDЕ, у которого сторона АDравна
Из последнего неравенства вытекает, что
Так как, кроме того, очевидно, что
S C’ DE>S
BC’ D, S
A DE>S
ABC’.
Теперь, построив на основании АDравнобедренный треугольник АDF, имеющий тот же периметр, что и треугольник АDЕ (этот треугольник, изображенный пунктиром на рис. 1.2.8, б),очевидно, будет равносторонним (т.к. AD=
S ADF> S
ADE
(треугольник АDЕ не совпадает с равносторонним треугольником АDF,так как
Цепьнеравенств:
S ABC
и доказывает теорему (в этом ряду неравенств мы один раз вынуждены писать
Рис. 1.2.9
б) Разобьем четырехугольник АВСDдиагональю АС на два треугольника. Заменив треугольники AВС и АСDравнобедренными треугольниками АВ’С и АСD’ с теми же основаниями и с теми же периметрами, мы получим четырехугольник АВ’CD’, причем в силу задачи 1.2.1 г):
SAB’CD’
Теперь заменим равные треугольники АВ’D’ и В’СD’ (по трем сторонам)равнобедренными треугольниками А’В’D’ и В’С’D’ с теми же основаниями и теми же периметрами; мы получим ромб А’В’С’D’,причем:
SA’B’C’D ’
Наконец, ромб А’В’С’D’ имеет в силу задачи 1.2.1 а) не большую площадь, чем квадрат А’’B’С’D’’ с той же стороной (рис. 1.2.9, в).
Если четырехугольник АВСDотличен от квадрата, то в цепи неравенств:
SABCD
хотя бы один раз должно стоять точное неравенство. [8, 227]
Задача №1.2.3
а) Если вписанный в круг n-угольник не является правильным, то у него есть сторона, меньшая стороны соответствующего правильного n-угольника. Предположим, что у этого вписанного в круг неправильного n-угольника есть сторона, большая стороны правильного n-угольника (если это не так, то весь n-угольник вписан в дугу окружности, меньшую
Не меняя площади многоугольника, вписанного в окружность, мы можем поменять его стороны местами так, чтобы рядом оказались сторона, большая стороны правильного n-угольника, и сторона, меньшая стороны правильного n-угольника (очевидно, что если поменять местами две соседние стороны вписанного в окружность многоугольника, то площадь его не изменится (рис. 1.2.11); повторяя этот процесс, можно добиться того, чтобы любые две стороны оказались рядом).
Рис. 1.2.11
Если мы теперь, не меняя остальных сторон, изменим длины этих двух сторон многоугольника так, чтобы одна из них стала равной стороне правильного n-угольника и многоугольник оставался вписанным в ту же окружность, то согласно задаче 1.2.1, 6) площадь n-угольника увеличится. Продолжая этот процесс далее, мы придем, в конце концов, к правильному n-угольнику; при этом в процессе изменения исходного n-угольника площадь его будет только увеличиваться.
б) Доказывается аналогично решению задачи 1.2.3 а). [6, 251]
Задача №1.2.4
а) Примем известный периметр искомого четырехугольника ABCD за единицу и пусть A’B’C’D’, какой лидо четырехугольник подобный ABCD. Тогда площадь ABCD равна отношению
Рис. 1.2.12
Постоим треугольник АВF два угла которого равны углам А и В искомого четырехугольника (такой треугольник невозможно построить лишь в том случае, когда сумма каждых двух соседних углов четырехугольника ABCDравна 1800. В этом исключительном случае наша задача формулируется так: доказать, что из всех параллелограммов с данным острым углом и данным периметром наибольшую площадь имеет ромб). Нам надо пересечь этот треугольник прямой CD данного направления, так, чтобы у получившегося четырехугольника ABCDотношение площади к квадрату периметра было возможно большим. Впишем в треугольник ABF окружность с радиусом r и центром О и проведем прямую CD заданного направления таким образом, что бы она касалась этой окружности (рис. 1.2.12). Докажем, что четырехугольник ABCD обладает требуемым свойством, т.е., если C’D’ – произвольная прямая параллельная CD, то: