Смекни!
smekni.com

Застосування симетричних многочленів (стр. 4 из 7)

Зауважимо, що сказане залишається справедливим і для більш загального випадку, коли

,де
- довільні симетричні многочлени над полем Р.

Розглянутий вище метод доведення основної теореми можна використати для практичного зображення симетричних многочленів через основні симетричні функції.

Приклад. Подати симетричний многочлен над полем

+

+

через основні симетричні функції. Як і при доведенні теореми, запишемо цей многочлен як суму однорідних многочленів. Дістанемо:

де

Спочатку

подамо через основні симетричні многочлени. Вищий його член є
. Згідно з методикою доведення теореми, від
слід відняти многочлен

бо система показників у вищому члені є 2, 1, 0. Але немає потреби фактично виконувати це віднімання. Спираючись на можливість і єдиність зображення даного многочлена у вигляді многочлена

досить визначити можливий вигляд членів
і скористатися методом невизначених коефіцієнтів.

У різниці

знищаться всі члени виду
з довільною перестановкою показників 2, 1, 0. Проте одночасно можуть з'явитися члени того самого степеня 3, але з іншою, нижчою системою показників, а саме: 1, 1, 1. Отже, потім треба буде відняти симетричний многочлен

Тому можна записати:

,

де а — невизначений поки що коефіцієнт, тобто:

Щоб знайти а, досить надати деяких числових значень змінним

наприклад
= 1. Тоді дістанемо 6 = 9 + а. Отже, а =
3. Таким чином,

Аналогічно міркуватимемо відносно многочлена

Можливі системи показників тут будуть 2, 0, 0 і 1, 1, 0. Отже, відніматимемо такі многочлени:

І далі, аналогічно до попереднього,

. При
= 1 маємо 3 = 32 + b
3, тобто b =
2 і тому

(15)

Отже, дістаємо остаточно


РОЗДІЛ IІ. ЗАСТОСУВАННЯ СИМЕТРИЧНИХ МНОГОЧЛЕНІВ

2.1 Розв’язування систем рівнянь

Дуже часто зустрічаються системи рівнянь, ліві частини яких симетрично залежать від невідомих x, y. В цьому випадку зручно перейти до нових невідомих

. За основною теоремою теорії симетричних многочленів, це завжди можливо. Необхідність такої заміни невідомих полягає в тому, що степені рівнянь після заміни зменшуються (оскільки
є многочленом другої степені від x, y). Іншими словами, як правило, розв’язування системи відносно нових невідомих
простіше, ніж розв’язування первинної системи.

Після того, як знайдені значення величин

, треба знайти значення первинних невідомих x, y. Це може бути зроблено за допомогою наступної теореми

Теорема. Нехай

- два довільні числа. Квадратне рівняння

(*)

і система рівнянь

(**)

пов'язані один з одним таким чином: якщо z1, z2 – корні квадратного рівняння (*), то система (**) має два розвязки:

і інших розв’язків не має; якщо x = a, y = b - розвязки системи (**), то числа a і b є коренями квадратного рівняння (*).

Доведення. Якщо z1 і z2 – корні квадратного рівняння (*), то по формулах Вієта

тобто числа

є розв’язками системи (**). Те, що інших розв’язків система (**) не має, витікає з останнього твердження теореми, яке ми зараз доведемо.

Отже, нехай x = a, y = b - розв’язок системи (**), тобто

ab =

.

Тоді ми маємо

Але це означає, що числа a і b являються коренями квадратного рівняння (*). Теорема доведена.

Наведемо приклади.

Приклад 1. Розв’язати систему рівнянь

Введемо нові невідомі

знаходимо:


а тому для нових невідомих отримуємо наступну систему рівнянь:

З цієї системи рівнянь отримуємо

.

Отже,

тобто для первинних невідомих x, y ми отримуємо наступну систему рівнянь :

Ця система рівнянь легко розв’язується, і ми отримуємо наступний розв’язок первинної системи:

Приклад 2. Розв’язати систему рівнянь

Розв’язання проводиться аналогічно. Вважаючи, що

приводимо початкову систему до вигляду

Звідси для

отримуємо квадратне рівняння

Чи


З цього рівняння знаходимо два значення для:

Таким чином, для первинних невідомих x, y отримуємо дві системи рівнянь:

та
Розв’язавши ці системи, знаходимо чотири розв’язки первинної системи:

2.2 Доведення тотожностей

У цілому ряді завдань на доведення тотожності також з успіхом можуть бути застосовані елементарні симетричні многочлени. За основною теоремою симетричних многочленів, кожну степеневу суму

можна представити у вигляді многочлена від,

Таблиця 2. 1 Вирази степенних сум

через,