Смекни!
smekni.com

Застосування симетричних многочленів (стр. 1 из 7)

Сумський держаний педагогічний університет імені А. С. Макаренка

Кафедра математики

КУРСОВА РОБОТА

з алгебри

на тему: «ЗАСТОСУВАННЯ СИМЕТРИЧНИХ МНОГОЧЛЕНІВ»

Студенки 3 курсу 432 групи

напряму підготовки 0402 фізико-математичних наук

спеціальності 6.040203 математика

Рудченко Олени Володимирівни

Керівник викладач кафедри математики

Друшляк Марина Григорівна

м. Суми – 2010 р.


ЗМІСТ

ВСТУП

РОЗДІЛ I. ТЕОРЕТИЧНІ ПОЛОЖЕННЯ ПРО СИМЕТРИЧНІ МНОГОЧЛЕНИ ТА ЇХ ВЛАСТИВОСТІ

1.1 Загальні поняття про симетричний многочлен

1.2 Властивості симетричних многочленів

РОЗДІЛ IІ. ЗАСТОСУВАННЯ СИМЕТРИЧНИХ МНОГОЧЛЕНІВ

2.1 Розв’язування систем рівнянь

2.2 Доведення тотожностей

2.3 Звільнення від ірраціональності

2.4 Вилучення коренів

ВИСНОВКИ

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ


ВСТУП

Важливе місце в курсі алгебри посідають симетричні многочлени та, зокрема, застосування симетричних многочленів при розв’язуванні рівнянь, систем рівнянь, вилучення коренів, доведення тотожностей, звільнення від ірраціональності у дробах тощо. Цими питаннями займалися багато вчених, зокрема, Франсуа Вієт.

Франсуа Вієт розробив ряд важливих питань теорії рівнянь 1 — 4 степенів. Він сформулював і довів кілька теорем про взаємозв'язки між коренями і коефіцієнтами рівнянь, зокрема, й теорему про зведене квадратне рівняння (теорема Вієта). На сьогоднішній день теорема Вієта є необхідною і важливою частиною шкільної програми.

Дана курсова робота складається з вступу, двох розділів, висновків і списку використаних джерел. Перший розділ «Теоретичні положення про симетричні многочлени та їх властивості» складається з двох параграфів. Вони присвячені загальним поняттям та основним властивостям симетричних многочленів. Другий розділ «Застосування симетричних многочленів» містить в собі приклади застосування симетричних многочленів на практиці. Розділ складається з чотирьох параграфів. Вони присвячені застосування симетричних многочленів до розв’язуванні систем рівнянь, доведення тотожностей, звільнення від ірраціональності у дробах та вилучення коренів.

властивість рівняння симетричний многочлен


РОЗДІЛ I. ТЕОРЕТИЧНІ ПОЛОЖЕННЯ ПРО СИМЕТРИЧНІ МНОГОЧЛЕНИ ТА ЇХ ВЛАСТИВОСТІ

1.1 Загальні поняття про симетричний многочлен

Серед найбільш важких завдань на розв’язання систем рівнянь вищих степенів є наступні:

Усі ці системи мають одну загальну властивість - ліві частини рівнянь є многочленами, у які x і y входять однаковим способом.

Означення. Многочлен від x і y називають симетричним, якщо він не змінюється при заміні x на y, та y на x.

Означення. Симетричний многочлен — многочлен від n змінних F(x1, x2, …, xn), що не змінюється при всіх перестановках змінних. Тобто многочлен F є R [x1, x2, …, xn] від n змінних над комутативним кільцем R є симетричним якщо для довільної перестановки.

Справедлива рівність: F(x1, x2, …, xn)

Симетричні многочлени утворюють підалгебру R-алгебри R [x1, x2, …, xn] многочленів від n змінних над кільцем R.

Многочлен x2y + xy2 - симетричний. Навпаки, многочлен x3 - 3y2 не є симетричним: при заміні x на y, а y на x він перетворюється на многочлен y3 - 3x2, який не збігається з первинним.

Приведемо найважливіші приклади симетричних многочленів. Як відомо з арифметики, сума двох чисел не міняється при перестановці доданків, тобто:

x + y = y + x

для будь-яких чисел x і y. Ця рівність показує, що многочлен x + y є симетричним. Так само із закону комутативності множення xy = yx

витікає, що добуток xy є симетричним многочленом. Симетричні многочлени x + y і xy є найпростішими. Їх називають елементарними симетричними многочленами від x і y. Для них використовують спеціальні позначення:

Кожен многочлен від основних симетричних, є симетричним.

Окрім

і
, часто зустрічаються так звані степеневі суми, тобто многочлени x2 + y2, x3 + y3, . . ., xn + yn, . . . Прийнято означати многочлен xn + yn через sn. Таким чином,

. (1)

Ця формула дозволяє послідовно знаходити Sn через

і
. Так за допомогою цієї формули можна послідовно знайти:

;

і т . д. У таблиці 1 зведені вирази степеневих сум s1, s2, . . ., s10 через і ці вирази будуть нам корисні при розв’язанні задач.

Таблиця 1 Вираження степеневих сум sn = xn + yn через

1.2 Властивості симетричних многочленів

Встановимо тепер деякі елементарні властивості довільних симетричних многочленів.

1. Сума, різниця і добуток симетричних многочленів над деяким полем Р є симетричними многочленами над цим полем.

Це твердження очевидне.

Наслідок.

Множина всіх симетричних многочленів над полем Р утворює область цілісності з одиницею відносно дій додавання і множення. Зрозуміло, що це кільце є підкільцем всіх многочленів над полем Р.

2. Якщо симетричний многочлен f (x1, x2, …, xn) містить деякий член

(2)

то він містить і член, утворений з (2) внаслідок будь-якої перестановки показників

.

Доведення. Оскільки, як відомо, від довільної перестановки показників

до всякої іншої перестановки цих показників можна перейти за допомогою скінченного числа транспозицій, то досить показати, що при транспозиції довільних двох показників степенів у члені (2) ми дістаємо знову деякий член симетричного многочлена

f (x1, x2, …, xn)

Виконуючи, наприклад, транспозицію показників ,

та
, матимемо член

(3)

За означенням симетричного многочлена

f (

,
, …,
xn) = f (
,
, …,
xn)

Але другий з цих многочленів повинен містити член (3), бо його дістаємо з члена (2) заміною

на
і навпаки. Тому внаслідок єдиності канонічної форми і даний многочлен повинен містити член (3).

Наслідок. Якщо

(4)

є вищий член симетричного многочлена, то

.

Доведення.Справді, припустимо супротивне, тобто що при якомусь

. На підставі властивості 2 даний многочлен разом з членом (4) містить і член

(5)

Але з умови

випливає, що член (5) вищий за член (4), тобто член (4) не може бути вищим у многочлені. Ця суперечність доводить наше твердження.