Смекни!
smekni.com

Нахождение полиноминальной аппроксимации методом наименьших квадратов (стр. 3 из 3)

=-7,320193878

=7,946172245

Этап 2 (Вычисление оценки

неизвестной дисперсии
шумов
):

, где

n – число измерений;

m – число неизвестных параметров.

Этап 3:

По таблице находим квантиль Стьюдента.

m/a 0.85 0.9 0.95 0.975
47 1.0480 1.2998 1.6779 2.0117
48 1.0478 1.2994 1.6772 2.0106
49 1.0475 1.2991 1.6766 2.0096
50 1.0473 1.2987 1.6759 2.0086

Фрагмент таблицы 1

При λ=0,975 , квантиль Стьюдента 2.0086

Уровень доверия

;
;

;
0,95 69,0225 30,7545
ymin ymax
25,9848632 19,188257
25,077453 18,924436
24,1700428 18,660615
23,2626327 18,396794
22,3552225 18,132973
21,4478123 17,869153
20,5404021 17,605332
19,632992 17,341511
18,7255818 17,07769
17,8181716 16,813869
16,9107614 16,550048
16,0033513 16,286227
15,0959411 16,022407
14,1885309 15,758586
13,2811208 15,494765
12,3737106 15,230944
11,4663004 14,967123
10,5588902 14,703302
9,65148007 14,439482
8,7440699 14,175661
7,83665973 13,91184
6,92924956 13,648019
6,02183939 13,384198
5,11442921 13,120377
4,20701904 12,856556
3,29960887 12,592736
2,3921987 12,328915
1,48478853 12,065094
0,57737835 11,801273
-0,3300318 11,537452
-1,237442 11,273631
-2,1448522 11,009811
-3,0522623 10,74599
-3,9596725 10,482169
-4,8670827 10,218348
-5,7744928 9,9545271
-6,681903 9,6907063
-7,5893132 9,4268854
-8,4967234 9,1630646
-9,4041335 8,8992437
-10,311544 8,6354229
-11,218954 8,371602
-12,126364 8,1077812
-13,033774 7,8439603
-13,941184 7,5801395
-14,848595 7,3163186
-15,756005 7,0524978
-16,663415 6,788677
-17,570825 6,5248561
-18,478235 6,2610353


Список литературы

1. Е.С. Кочетков “Метод наименьших квадратов”, Москва, МАИ, 1993.

2. А.И. Кибзун “Теория вероятностей и математическая статистика. Базовый курс с примерами и задачами”, Москва, «Физматлит», 2002.

3. Е.С. Вентцель “ Теория вероятностей ”, Москва, «Высшая школа», 1999.