Введение
В настоящее время различные виды комплексных чисел изучаются довольно интенсивно. С учением о комплексных числах связаны важные, не решённые до сегодняшнего дня задачи, над которыми работают учёные во многих странах.
Все системы самых общих комплексных чисел фактически сводятся к следующим трём различным системам: обыкновенные комплексные числа, дуальные числа, двойные числа.
Обыкновенные комплексные числа тесно связаны с вопросом о решении уравнений второй и высших степеней, они играют основную роль в алгебре и во многих разделах математического анализа. Дуальные же и двойные числа не имеют никакого отношения к теории квадратных уравнений с вещественными коэффициентами и вообще сравнительно мало связаны с алгеброй. Основные применения эти числа находят в геометрии (некоторые применения эти системы комплексных чисел находят также в теории чисел).
Основные применения двойных чисел относятся к неевклидовой геометрии Лобачевского и к некоторым другим геометриям, отличным от привычной геометрии Евклида (например, к так называемой псевдоевклидовой геометрии, играющей фундаментальную роль в физической теории относительности).
В нашей работе исследуются дуальные и двойные числа, а также применение этих чисел в геометрии Евклида и в геометрии Лобачевского.
Глава I. Определение дуальных и двойных чисел
1.1 Дуальные числа
Сложение, вычитание и умножение дуальных чисел определяется формулами:
(1)Последняя из этих формул показывает, что произведение дуального числа
на другое число будет вещественным лишь в том случае, когда ; если , то последнее равенство можно записать в виде . Вещественным, в частности, является произведение чисел и : (2)Число
называют сопряжённым числу (и обратно, сопряжено ); корень квадратный из произведения (совпадающий с полусуммой сопряжённых чисел и ) называют модулем дуального числа и обозначают через (отметим, что модуль дуального числа может быть и отрицательным). Сумма двух сопряжённых чисел является вещественной; разность является числом чисто мнимым (т.е. отличается от лишь вещественным множителем). Заметим ещё, что, в полной аналогии с обыкновенными комплексными числами, дуальное число тогда и только тогда совпадает со своим сопряжённым , когда оно является вещественным. Также и справедливые для комплексных чисел формулы (3) , , , (3)полностью остаются в силе для дуальных чисел.
Правило деления на дуальное число
мы теперь можем записать так: . (4)Отсюда видно, что для возможности деления на дуальное число
необходимо, чтобы модуль этого числа был отличен от нуля; при этом, в противоположность обыкновенным комплексным числам, дуальное число нулевого модуля само может быть отличным от нуля. В тех случаях, когда невозможность деления на числа нулевого модуля явится для нас затруднением, мы будем считать, что частные и являются числами новой природы, которые условимся обозначать через и ; введём также в рассмотрение всевозможные числа вида , где вещественно. Тогда любое дуальное число будет иметь обратное: при ; .Правила действий над символом
определяются следующими формулами: , , , , , (5)здесь
- произвольное число, причём в среднем равенстве , а во втором и в двух последних ( в этих формулах может быть и числом вида ); правила действий над числами определяются так: (6)Положим ещё
, ; (6а)тогда для расширенного (введением чисел
, ) множества дуальных чисел сохраняет силу равенство и все правила (3).Число
нулевого модуля можно характеризовать тем, что существует отличное от нуля дуальное число , равное , произведение которого на число равняется нулю: . (7)Поэтому эти числа называют делителями нуля.
Дуальные числа ненулевого модуля
можно также записать в форме, близкой к тригонометрической форме комплексного числа: . (8)Здесь
есть модуль числа , а отношение называется аргументом этого числа и обозначается через Argz(rможет быть произвольным вещественным числом, отличным от нуля; - произвольным вещественным числом). Очевидно, что вещественные числа характеризуются равенством нулю их аргумента; сопряжённые дуальные числа и имеют одинаковый модуль r и противоположные аргументы и .