Архангельский государственный технический университет
Кафедра эксплуатации автомобилей и МЛК
(наименование кафедры)
По дисциплине
Основы теории надежности и диагностики
На тему
Расчет показателей надежности и законов их распределения
Руководитель
Кузнецов Н.И.
Архангельск
2009
Задание
По данным, (они представляют собой ресурсы автомобилей или их агрегатов до капитального ремонта в тысячах километров пробега), необходимо:
- определить среднее арифметическое значение ресурса автомобиля до капитального
ремонта;
- рассчитать среднее квадратическое отклонение ресурса;
- определить коэффициент вариации ресурса;
- построить эмпирический закон распределения ресурса;
- подобрать теоретический закон;
- проверить согласие теоретического и эмпирического законов распределений;
- определить доверительный интервал для математического ожидания ресурса.
1. Расчет параметров экспериментального распределения
Число классов статистического ряда определяем по формуле (11):
,где N– общее число наблюдений
Принимаем
.Размах выборки для нашего ряда
Значение классового промежутка находим по формуле (12):
Для удобства вычислений принимаем
.Середина классов W – полусумма начала данного класса и начала следующего класса. Середины крайних классов принимаем близкими к наименьшему и наибольшему значениям случайной величины.
Начало Wa и конец Ww класса находим по формулам:
где h-принятая точность измерения случайной величины.
Результаты расчетов сведены в таблицу 1.
Таблица 1 - Cоставление статистического ряда
Границы класса | Середина | Частота | ||
15,09 | 17,08 | 16,09 | 0,00 | |
13,09 | 15,08 | 14,09 | 0,00 | |
11,09 | 13,08 | 12,09 | 0,00 | |
9,09 | 11,08 | 10,09 | 2,00 | |
7,09 | 9,08 | 8,09 | 9,00 | |
5,09 | 7,08 | 6,09 | 16,00 | |
3,09 | 5,08 | 4,09 | 14,00 | |
1,09 | 3,08 | 2,09 | 9,00 | |
Всего | 50,00 |
2. Вычисление среднего арифметического значения и среднего квадратического отклонения
Среднее арифметическое значение случайной величины способом произведений вычисляем по формуле
(13)где А - условная средняя, середина модального или близкого к нему класса;
S1 - первая сумма,
а - условные отклонения середин классов, выраженные в классовых промежутках,
Среднее квадратическое отклонение определяем по формуле
(14)где с - сумма взвешенных квадратов центральных отклонений середин классов от средней ряда, выраженная в квадратах классов промежутков,
S2 – вторая сумма,
Результаты расчетов сведены в таблицы 2 и 3.
Таблица 2 - Вспомогательные вычисления для определения
W | f | a | fa | fa^2 |
16,09 | 0 | 3,0 | 0 | 0 |
14,09 | 0 | 2,0 | 0 | 0 |
12,09 | 0 | 1,0 | 0 | 0 |
10,09 | 2 | 0,0 | 0 | 0 |
8,09 | 9 | -1,0 | -9 | 9 |
6,09 | 16 | -2,0 | -32 | 64 |
4,09 | 14 | -3,0 | -42 | 126 |
2,09 | 9 | -4,0 | -36 | 144 |
Всего | 50 | -119 | 343 |
Таблица 3
S1 | S2 | X | C | Сигма | V |
-119 | 343 | 5,33 | 59,78 | 2,21 | 0,414 |
3. Определение вида закона распределения случайной величины
распределение экспериментальный случайный величина
Закон распределения случайной величины определяют в следующей последовательности:
- выравнивают эмпирический ряд одним из теоретических распределений;
- производят оценку различий эмпирического и теоретического распределений по критериям c2 или l.
3.1 Экспоненциальный закон распределения
Теоретические частоты для распределения определяют по формуле
,где
- экспоненциальная функция, значения которой табулированы; - условные отклонения середин классов, .Результаты расчетов сведены в таблицу 4, выравнивание статистического ряда по экспоненциальному закону приведено на рисунке 1.
Таблица 4 - Выравнивание статистического ряда по экспоненциальному закону
W | f | W-X | x=Wi/X | ℓ | (Nk/X)*ℓ | f' |
16,09 | 0,00 | 10,76 | 3,02 | 0,026 | 0,488 | 0,00 |
14,09 | 0,00 | 8,76 | 2,64 | 0,035 | 0,657 | 1,00 |
12,09 | 0,00 | 6,76 | 2,27 | 0,492 | 0,657 | 1,00 |
10,09 | 2,00 | 4,76 | 1,89 | 0,077 | 1,435 | 1,00 |
8,09 | 9,00 | 2,76 | 1,52 | 0,135 | 2,538 | 3,00 |
6,09 | 16,00 | 0,76 | 1,14 | 0,237 | 4,445 | 4,00 |
4,09 | 14,00 | -1,24 | 0,77 | 0,415 | 7,782 | 8,00 |
2,09 | 9,00 | -3,24 | 0,39 | 0,733 | 13,760 | 14,00 |
Всего | 50,00 | 31,76 | 32,00 |
Рисунок 1 - Выравнивание статистического ряда по экспоненциальному закону распределения
3.1.1 Оценка различий эмпирического и теоретического распределений
Методика оценки различий эмпирического и теоретического распределений для различных законов распределения одна и та же.
Для проверки согласованности теоретического и эмпирического распределений чаще всего используют критерий c2 Пирсона, величину которого рассчитывают по формуле
где c02 – стандартные значения критерия, его значения находят по специальным таблицам в зависимости от числа степеней свободы v;
, – эмпирические и теоретические частоты классов соответственно.Первичное v1 и вторичное v2 числа степеней свободы определяют по следующим формулам:
; ; .где r1,r2 - числа классов до и после объединения классов с малыми теоретическими частотами.
Крайние классы с частотой
< объединяют с соседними классами ( – минимально допустимая теоретическая частота крайних классов в зависимости от начального числа степеней свободы)Различия распределений могут считаться случайными, если эмпирический критерий не достигает требуемого порога вероятности b. Необходимо ориентироваться на три уровня вероятности: при малой ответственности исследований b1>= 0,999; при обычной b2 >= 0,99; при большой b3 >= 0,95.
Таблица 5 - Определение различий законов распределения
W1 | f | f ' | f-f ' | (f-f ' )^2 | ( f-f ' )^2/f ' |
16,1 | 0 | 0,49 | -0,49 | 0,24 | 0,49 |
14,1 | 0 | 0,66 | -0,66 | 0,43 | 0,66 |
12,1 | 0 | 0,66 | -0,66 | 0,43 | 0,66 |
10,1 | 2 | 1,44 | 0,56 | 0,32 | 0,22 |
8,1 | 9 | 2,54 | 6,46 | 41,75 | 16,45 |
6,1 | 16 | 4,44 | 11,56 | 133,53 | 30,04 |
4,1 | 14 | 7,78 | 6,22 | 38,66 | 4,97 |
2,1 | 9 | 13,76 | -4,76 | 22,66 | 1,65 |
Всего | 50 | 31,762 | 55,13 |
Следовательно, c02: 13,3; 18,5 при b соответственно, 0,99, 0,999
Таким образом, при b=0,99 и 0,999 ответственности испытаний c2 больше c02, то есть эмпирическое распределение противоречит экспоненциальному закону распределения.