Под сюжетными понимаются задачи, в которых описан некоторый жизненный сюжет (явление, событие, процесс), с целью нахождения определённых количественных характеристик или значений. Эти задачи имеют и другие названия: текстовые, практические, аналитические (задачи на составление уравнений или систем уравнений), арифметические и т.д.
Сюжетные задачи – это наиболее древний вид школьных задач. Они всегда широко использовались и будут использоваться в обучении математике. Ещё задолго до нашей эры в Древнем Египте, Вавилоне, Китае, Индии были известны и многие методы их решения. Однако со временем цели и функции решения сюжетных задач существенно изменялись и меняются до сих пор.
Если например до 19-ого века цели решения этих задач были чисто практические: научить решать задачи, которые часто встречаются в жизненной практике, то затем эти цели значительно расширились и, кроме практических целей, они начинают использоваться как важное общеобразовательное и методическое средство. Известный русский методист В.А. Евтушевский (1836-1888) так охарактеризовал функции сюжетных задач в обучении начальной математике: «Задачи, предлагаемые в классе, заключают в себе живой материал для упражнения мышления ученика, для вывода математических правил и для упражнения приложения этих правил в решении частных практических вопросов».
Эти три функции решения сюжетных задач сохранились и до наших дней, но их характер и значимость стали иными. Если раньше решение сюжетных задач рассматривалось чуть ли не единственным средством для осуществления каждой из указанных трёх функции, то теперь положение коренным образом изменились. Так, в настоящее время считается, что развитие мышления учащихся должно осуществляется не только в процессе решения сюжетных задач, но и в процессе всего обучения математике.Что касается третьей функции (приложение математики к решению частных практических вопросов), то современная жизненная практика наших детей и взрослых совсем иная, чем во времена В.А. Евтушевского. Те непосредственные применения, которые раньше имели различные задачи по покупку и продажу, на совместную работу, на движение и пр., теперь играют не очень существенную роль в жизни людей, особенно если учесть, что подавляющее большинство таких задач, применяемых в школьном обучении, носит искусственный характер.
Главное состоит в том, чтобы сформировать у учащихся общий подход к решению любых задач. Это подход состоит в том, что задача рассматривается как модель некоторой проблемной ситуации, как объект для тщательного изучения, а её решение – как процесс применения общих теоретических положений математики и общелогических правил вывода к условиям задачи, с целью последовательного её преобразования и перемоделирования до тех пор, пока не будет удовлетворено требование задачи – не будет найден ответ на вопрос задачи.
Следует отметить, что такой подход к решению сюжетных задач, как это показали проведенные многолетние эксперименты, обеспечивает высокий уровень развития у учащихся творческой инициативы, способностей и умений решения не только сюжетных, но и любых задач, А это важно потому, что вся творческая жизнедеятельность человека связана с решением задач: каждое самостоятельное его действие – это решение некоторой задачи, которая возникает перед ним в силу сложившихся условий и обстоятельств или которую он сам в силу своих внутренних потребностей ставит перед собой. Вооружить наших учащихся такой культурой жизнедеятельности – вот главная цель решения сюжетных и других задач в школьном обучении.
Пояснительная записка
Сюжетные задачи – это наиболее древний вид школьных задач. Они всегда широко использовались, и будут использоваться в обучении математике. Они помогают учащимся понять сущность и методику применения математического моделирования, сформировать общий подход к решению любых задач, однако в школьном курсе математики отводится недостаточно времени решению сюжетных (текстовых) задач. Это и определило необходимость в составлении данного курса.
Статистические данные анализа результатов проведения ЕГЭ с момента его существования говорят о том, что решаемость задания, содержащего текстовую задачу, составляет год от года чуть больше или меньше 30%. Такая ситуация позволяет сделать вывод, что большинство учащихся не в полной мере владеет техникой решения текстовых задач и не умеет за их часто нетрадиционной формулировкой увидеть типовые задания, которые были достаточно хорошо отработаны на уроках в рамках школьной программы. По этой причине возникла необходимость более глубокого изучения этого традиционного раздела элементарной математики.
Полный минимум знаний, необходимый для решения всех типов текстовых задач, формируется в течение первых девяти лет обучения учащихся в школе, поэтому представленный элективный курс «Текстовые задачи» рекомендуется вводить с 9-го класса. Хотя при творческом подходе учителя к его проведению, исключив пока ещё не изученные на уроках темы, можно ввести этот курс и раньше. Подобный подход возможен, так как каждая тема, за исключением первой, является вполне самостоятельной и не связана с другими. За счёт высвободившихся часов можно увеличить количество практических занятий по другим темам.
Данный элективный курс представляет возможность реализации интереса к выбранному профилю, создает условия для осознанного выбора профиля.
Цель курса:
Создание условий для:
· формирования у школьников общих подходов к решению сюжетных задач;
· овладения навыками моделирования, как одного из методов познания и решения сюжетных задач;
· формирование умений и навыков решения задач сюжетного содержания.
Задачи курса:
· обобщить виды задач, изученных ранее, и конкретизировать понятие сюжетных задач;
· определить методы моделирования учебной задачи;
· ознакомить учащихся с всевозможными подходами к решению сюжетных задач различного уровня сложности;
· помочь школьникам овладеть приемами исследовательской работы и методами решения задач.
Учебный процесс элективного курса предусматривает следующие методы и формы работы:
· изложение нового материала учителем в форме лекции;
· дифференцированный подход на практических занятиях: для всех тем курса подобраны задания различного уровня сложности, которые в зависимости от уровня усвоения материала учащимися будут им предложены;
· самостоятельная работа с учебной литературой;
· индивидуальные консультации.
Данный курс рассчитан на полгода, 14 учебных часов, по 2 часа в неделю, в течении одной четверти.
Содержание курса
В программу элективного курса включены следующие темы и ориентировочное время для их изучения
№п/п | Тема | Количество часов |
1 | Вводное занятие | 1 |
2 | Методы решения сюжетных задач | 3 |
3 | Задачи на физические процессы | 2 |
4 | Задачи на химические процессы | 3 |
5 | Задачи с экономическим содержанием | 3 |
6 | Итоговое занятие | 1 |
Итого: | 12 |
Методические рекомендации элективного курса «Сюжетные задачи»
Тема 1. Вводное занятие.
На вводном занятии рекомендуется:
· объяснить учащимся цели данного элективного курса;
· поставить необходимые задачи;
· рассказать кратко о том, что будет изучаться, выяснить всевозможное применение задач в жизнедеятельности человека (с помощью учащихся);
· объяснить, каким образом будут подводиться итоги изучения курса и оцениваться работа учащихся.
Тема 2. Методы решения сюжетных задач.
Сюжетные задачи многими людьми, окончившими школу, вспоминаются как самые трудные. Для того чтобы понять, в чем состоит сложность решения этих задач, необходимо проанализировать собственный опыт их решения.
В каждой сюжетной задаче можно выделить:
· числовые значения величин, которые называются данными, или известными (их должно быть не меньше двух);
· некоторую систему функциональных зависимостей в неявной форме, взаимно связывающих искомое с данными и данные между собой (словесный материал, указывающий на характер связей между данными и искомыми);
· требование или вопрос, на который надо найти ответ.
Существуют различные методы решения данного класса задач:
· арифметический метод;
Решить задачу арифметическим методом – значит найти ответ на требование задачи посредством выполнения арифметических действий над числами. Одну и ту же задачу можно решить различными арифметическими способами. Они отличаются друг от друга логикой рассуждений, выполняемых в процессе решения задачи. Выделяют два основных подвида арифметического метода решения:
- составление пропорций по условию задачи и нахождение четвертого пропорционального;
- получение числового выражения или последовательности числовых выражений и нахождение из значений.
· алгебраический метод;