Смекни!
smekni.com

Метод релаксации переменных решения СЛАУ (стр. 3 из 4)

Оценим число итераций n0(e), которое требуется для достижения заданной точности e в случае малых x, т.е. для получения оценки

.
(1.41)

Из условия

получаем, что
,
(1.42)

и при малых x имеем

.
(1.43)

Заметим, что в качестве критерия сходимости итерационного метода может использоваться невязка, которая получается при подстановке найденного решения в систему (1.1).

1.1 Метод верхних релаксаций

линейный уравнение итерационный релаксация

Среди явных одношаговых итерационных методов наибольшее распространение получил метод верхних релаксаций (1.21). Это связано с тем, что метод верхних релаксаций содержит свободный параметрw, изменяя который можно получать различную скорость сходимости итерационного процесса.

Наиболее эффективно этот метод применяется при решении множества близких алгебраических систем линейных уравнений. На первом этапе проводится решение одной из систем с различными значениями итерационного параметраw и из анализа скорости сходимости итерационного процесса выбирается оптимальное значение этого параметра. Затем все остальные системы решаются с выбранным значением w.

Еще одно достоинство итерационного метода верхних релаксаций состоит в том, что при его реализации на ЭВМ алгоритм вычислений имеет простой вид и позволяет использовать всего один массив для неизвестного вектора.


Основная вычислительная формула имеет вид

(1.44)

В выражение (1.44)

и
входят одинаковым образом, следовательно, при вычислениях они могут записываться в один и тот же массив. При реализации метода верхних релаксаций используется следующая форма записи алгоритма вычислений
.
(1.45)

Действительно, при последовательном нахождении элемента

(i+1 итерации) на каждом шаге будут использоваться найденные ранее значения, которые при k<j соответствуют i +1 итерации, а при k>j-i итерации.

Современная вычислительная техника позволяет проводить исследование устойчивости и сходимости итерационного метода в зависимости от параметров задачи. Например, можно проводить исследование влияния повышения точности решения задачи на число необходимых итераций, исследование влияния начального приближения, изменения коэффициентов матрицы А и правых частей системы.

1.2 Âû÷èñëèòåëüíûå ïîãðåøíîñòè ìåòîäà âåðõíèõ ðåëàêñàöèé

Один из основных вопросов применения итерационных методов связан с корректностью выбора точности метода e.

Àíàëèçèðóÿ âû÷èñëèòåëüíûå ïîãðåøíîñòè âûðàæåíèÿ (1.45), ïîëó÷èì îöåíêó íàèìåíüøåãî çíà÷åíèÿ òî÷íîñòè ìåòîäà âåðõíèõ ðåëàêñàöèé.

Очевидно, что искомая погрешность вычислений будет определяться погрешностью задания коэффициентов исходной системы и погрешностью округления.

Çàïèøåì ðàçíîñòü äâóõ èòåðàöèîííûõ ïðèáëèæåíèé ðåøåíèÿ è îöåíèì å¸ ìèíèìàëüíîå çíà÷åíèå

(1.46)

Пусть коэффициенты

и fi заданы с некоторой относительной погрешностью
. Предположим, что итерационный метод сходится, и невязка
(1.47)

бывает с ростом номера итерации k, т.е.

. Оценка абсолютной погрешности правой части выражения (10) может быть представлена в следующем виде
,
(1.48)

здесь

.- модуль минимального значения диагонального элемента
.Отсюда следует, что задаваемая погрешность метода
.

1.3 Ìåòîä áëî÷íîé ðåëàêñàöèè

Èñõîäíàÿ ìàòðèöà

ðàçáèâàåòñÿ íà áëîêè (â ðàìêàõ ëàáîðàòîðíîé ðàáîòû áóäåì ðàññìàòðèâàòü ñëó÷àé, êîãäà
ðàçáèâàåòñÿ íà êâàäðàòíûå áëîêè ðàâíîé ðàçìåðíîñòè). Âåêòîð ïðàâîé ÷àñòè è âåêòîð íåèçâåñòíûõ ðàçáèâàþòñÿ íà áëîê-âåêòîðû ñîîòâåòñòâóþùåé ðàçìåðíîñòè. Íàïðèìåð, äëÿ ðàçìåðà áëîêà ðàâíîãî äâóì, ïîëó÷àåì:
(1.49)

ãäå

(1.50)
(1.51)
(1.52)

Çàïèøåì ôîðìóëó äëÿ áëîêîâ ìàòðèöû

è áëîê-âåêòîðîâ
è
:
(1.53)

Îáîçíà÷èì

(1.54)
(1.55)

Òîãäà, ïîäñòàâëÿÿ (1.54) è (1.55) â (1.53) è óìíîæàÿ ñëåâà íà

, äëÿ êàæäîãî áëîê-âåêòîðà
ïîëó÷àåì ÑËÀÓ:
(1.56)

Ðåøåíèå ïîëó÷åííûõ ñèñòåì (1.56) ðåêîìåíäóåòñÿ âûïîëíÿòü ñ èñïîëüçîâàíèåì ôàêòîðèçàöèè ìàòðèöû

, ïðè÷¸ì ôàêòîðèçàöèþ ñëåäóåò âûïîëíÿòü 1 ðàç ïåðåä ïåðâîé èòåðàöèåé.