Смекни!
smekni.com

Обусловленность матрицы (стр. 2 из 3)


Отсюда видим, что

Строим гистограмму элементов вектора относительных погрешностейd. (см. файл «Вектор и гистограмма»)

По гистограмме видно, что наибольшее влияние на погрешность решения оказывает компонента

вектора
.

Найдем число обусловленности

матрицы A

Число обусловленности матрицы A вычисляется по формуле

Норма матрицы A:

=57,3638

Норма обратной матрицы

:
=129841,19

7448184,055

Теоретическая оценка погрешности

Так как

то матрица плохо обусловлена, это значит, что незначительные изменения в правой части приведут к большой погрешности в решении.

Задача 2 Метод хорд

Методом хорд найти корень уравнения

с точностью
.

Решение

Найдем интервал, в котором находится корень:

Корнем уравнения является точка пересечения этих функций


Из графика видно, что корень лежит в интервале

.

Найдем неподвижный конец:

Для определения используем horda.xls(см. приложение)

y(a) -0,5 y(b) 0,493147 непод
y'(a) 1,5 y'(b) 0,66 1
y''(a) -1,75 y''(b) -0,426

Неподвижный конец -1

Выполняем приближение, используя horda.xls

Х х0
1 2
xi F(xi) sigma
1,50345005 0,1010481 else
1,41881012 0,0179259 else
1,40431471 0,0030870 else
1,40183381 0,0005288 else
1,40140927 0,0000905 else
1,40133662 0,0000155 else
1,40132419 0,0000027 and

Окончание процесса – при

,это и есть наш корень.

Задача 3 Решение СЛАУ

Решить систему уравнений ax=b, где

Вычислить точностные оценки методов по координатам:

,
- координаты численного решения,
- координаты точного решения.

1. Метод простых итераций

Сделаем расчет, используя SLAU.xls

х1 0,7500 -0,7500 -0,3333 -0,4375 -0,7708 0,7500
х2 1,0000 -0,3750 -0,4444 -0,5833 -0,4028 1,0000 1
х3 0,6667 -0,2500 -0,6667 -0,8750 -1,1250 0,6667
х4 1,7500 -0,1875 -0,5000 -0,5000 0,5625 1,7500
х1 0,7500 0,3021 0,5625 -0,1406 1,4740 -0,7708
х2 1,0000 0,3854 0,7500 -0,1875 1,9479 -0,4028 2
х3 0,6667 0,2569 0,2685 -0,2813 0,9109 -1,1250
х4 1,7500 0,1927 0,2014 0,8438 2,9879 0,5625
х1 0,7500 -1,4609 -0,4555 -0,7470 -1,9134 1,4740
х2 1,0000 -0,7370 -0,6073 -0,9960 -1,3402 1,9479 3
х3 0,6667 -0,4913 -1,2986 -1,4940 -2,6172 0,9109
х4 1,7500 -0,3685 -0,9740 -0,6832 -0,2756 2,9879
х1 0,7500 1,0052 1,3086 0,0689 3,1327 -1,9134
х2 1,0000 0,9567 1,7448 0,0919 3,7934 -1,3402 4
х3 0,6667 0,6378 0,8935 0,1378 2,3357 -2,6172
х4 1,7500 0,4784 0,6701 1,9629 4,8614 -0,2756

Решение, наиболее близкое к точному, получено из таблицы 3

Х1=1,4740

Х2=1,9479

Х3=0,9109

Х4=2,9879

Найдём

:
xi xi* |xi-xi*|
0 1,474 1,474
1 1,9479 0,9479
-1 0,9109 1,9109
2 2,9879 0,9879
max 1,9109

(МПИ)=1,9109

2. Метод Зейделя

Сделаем расчет, используя SLAU.xls

х1 0,7500 0,0000 0,0000 0,0000 0,7500 0,0000
х2 1,0000 -0,3750 0,0000 0,0000 0,6250 0,0000 1
х3 0,6667 -0,2500 0,0000 0,0000 0,4167 0,0000
х4 1,7500 -0,1875 -0,3125 -0,3125 0,9375 0,0000
х1 0,7500 -0,4688 -0,2084 -0,2344 -0,1615 0,7500
х2 1,0000 0,0807 -0,2778 -0,3125 0,4904 0,6250 2
х3 0,6667 0,0538 -0,4167 -0,4688 -0,1649 0,4167
х4 1,7500 0,0404 -0,2452 0,1237 1,6688 0,9375
х1 0,7500 -0,7499 0,5000 -0,5000 0,0000 0,0000
х2 1,0000 0,0000 0,6666 -0,6667 0,9999 0,9999 30
х3 0,6667 0,0000 -0,6666 -1,0000 -0,9999 -0,9999
х4 1,7500 0,0000 -0,5000 0,7500 2,0000 2,0000

Решение, наиболее близкое к точному, получено на 30 шаге вычислений

Х1=0

Х2=0,9999

Х3=0,9999

Х4=2

Найдём

:
xi xi* |xi-xi*|
0 0,0000 0,0000
1 0,9999 -0,0001
-1 -0,9999 0,0001
2 2,0000 0,0000
max 0,0001

=0,0001

Вывод: МПИ - быстрее сходится, но обладает меньшей точностью, чем метод Зейделя, который дольше сходится.

Задача 4 Сплайн интерполяция

Х У
-2,00 -3,00
0,00 2,00
1,00 0,00
3,00 2,00
4,00 1,00
5,00 0,00

Для вычислений используем splain.xls

Найдем

:
hi=xi - xi-1
h0 2,00
h1 1,00
h2 2,00
h3 1,00
h4 1,00

Для вычисления q будем использовать метод прогонки.

Вычислим массивы коэффициентов a,b,c и правой части d:

a b c d
0 0,0000 1,0000 0,1667 -4,50
1 0,1667 1,0000 0,3333 3,00
2 0,3333 1,0000 0,1667 -2,00
3 0,1667 0,6667 0,0000 0,00

Вычисление прогоночных коэффициентов:

A[ ] B[ ]
0,00 0,00
-0,16667 -4,5
-0,34286 3,857143
-0,18817 -3,70968
0 0,973202

Теперь вычисляем

x y
-2 -3
-1,9 -2,62093
-1,8 -2,24381
-1,7 -1,87056
-1,6 -1,50314
-1,5 -1,14348
-1,4 -0,79353
-1,3 -0,45522
-1,2 -0,13049
-1,1 0,178702
-1 0,47043
-0,9 0,74275
-0,8 0,99372
-0,7 1,221401
-0,6 1,423849
-0,5 1,599126
-0,4 1,74529
-0,3 1,860401
-0,2 1,942516
-0,1 1,989696
0 2
0,1 1,852492
0,2 1,673571
0,3 1,470644
0,4 1,251116
0,5 1,02239
0,6 0,791874
0,7 0,566972
0,8 0,355088
0,9 0,163629
1 0
1,1 0,005772
1,2 0,043163
1,3 0,108555
1,4 0,198332
1,5 0,308877
1,6 0,436575
1,7 0,577807
1,8 0,728958
1,9 0,886412
2 1,046551
2,1 1,205759
2,2 1,360419
2,3 1,506916
2,4 1,641631
2,5 1,760949
2,6 1,861253
2,7 1,938927
2,8 1,990354
2,9 2,011917
3 2
3,1 1,989668
3,2 1,946922
3,3 1,876445
3,4 1,78292
3,5 1,67103
3,6 1,545457
3,7 1,410885
3,8 1,271996
3,9 1,133473
4 1
4,1 0,872264
4,2 0,753286
4,3 0,642094
4,4 0,537715
4,5 0,439175
4,6 0,345501
4,7 0,255719
4,8 0,168858
4,9 0,083942
5 0