Отсюда видим, что
Строим гистограмму элементов вектора относительных погрешностейd. (см. файл «Вектор и гистограмма»)
По гистограмме видно, что наибольшее влияние на погрешность решения оказывает компонента
вектора .Найдем число обусловленности
матрицы AЧисло обусловленности матрицы A вычисляется по формуле
Норма матрицы A:
=57,3638Норма обратной матрицы
: =129841,19Теоретическая оценка погрешности
Так как
то матрица плохо обусловлена, это значит, что незначительные изменения в правой части приведут к большой погрешности в решении.Методом хорд найти корень уравнения
с точностью .Решение
Найдем интервал, в котором находится корень:
Корнем уравнения является точка пересечения этих функций
Из графика видно, что корень лежит в интервале
.Найдем неподвижный конец:
Для определения используем horda.xls(см. приложение)
y(a) | -0,5 | y(b) | 0,493147 | непод |
y'(a) | 1,5 | y'(b) | 0,66 | 1 |
y''(a) | -1,75 | y''(b) | -0,426 |
Неподвижный конец -1
Выполняем приближение, используя horda.xls
Х | х0 | |
1 | 2 | |
xi | F(xi) | sigma |
1,50345005 | 0,1010481 | else |
1,41881012 | 0,0179259 | else |
1,40431471 | 0,0030870 | else |
1,40183381 | 0,0005288 | else |
1,40140927 | 0,0000905 | else |
1,40133662 | 0,0000155 | else |
1,40132419 | 0,0000027 | and |
Окончание процесса – при
,это и есть наш корень.Решить систему уравнений ax=b, где
Вычислить точностные оценки методов по координатам:
, - координаты численного решения, - координаты точного решения.1. Метод простых итераций
Сделаем расчет, используя SLAU.xls
х1 | 0,7500 | -0,7500 | -0,3333 | -0,4375 | -0,7708 | 0,7500 | |
х2 | 1,0000 | -0,3750 | -0,4444 | -0,5833 | -0,4028 | 1,0000 | 1 |
х3 | 0,6667 | -0,2500 | -0,6667 | -0,8750 | -1,1250 | 0,6667 | |
х4 | 1,7500 | -0,1875 | -0,5000 | -0,5000 | 0,5625 | 1,7500 |
х1 | 0,7500 | 0,3021 | 0,5625 | -0,1406 | 1,4740 | -0,7708 | |
х2 | 1,0000 | 0,3854 | 0,7500 | -0,1875 | 1,9479 | -0,4028 | 2 |
х3 | 0,6667 | 0,2569 | 0,2685 | -0,2813 | 0,9109 | -1,1250 | |
х4 | 1,7500 | 0,1927 | 0,2014 | 0,8438 | 2,9879 | 0,5625 |
х1 | 0,7500 | -1,4609 | -0,4555 | -0,7470 | -1,9134 | 1,4740 | |
х2 | 1,0000 | -0,7370 | -0,6073 | -0,9960 | -1,3402 | 1,9479 | 3 |
х3 | 0,6667 | -0,4913 | -1,2986 | -1,4940 | -2,6172 | 0,9109 | |
х4 | 1,7500 | -0,3685 | -0,9740 | -0,6832 | -0,2756 | 2,9879 |
х1 | 0,7500 | 1,0052 | 1,3086 | 0,0689 | 3,1327 | -1,9134 | |
х2 | 1,0000 | 0,9567 | 1,7448 | 0,0919 | 3,7934 | -1,3402 | 4 |
х3 | 0,6667 | 0,6378 | 0,8935 | 0,1378 | 2,3357 | -2,6172 | |
х4 | 1,7500 | 0,4784 | 0,6701 | 1,9629 | 4,8614 | -0,2756 |
Решение, наиболее близкое к точному, получено из таблицы 3
Х1=1,4740
Х2=1,9479
Х3=0,9109
Х4=2,9879
Найдём
:xi | xi* | |xi-xi*| |
0 | 1,474 | 1,474 |
1 | 1,9479 | 0,9479 |
-1 | 0,9109 | 1,9109 |
2 | 2,9879 | 0,9879 |
max | 1,9109 |
2. Метод Зейделя
Сделаем расчет, используя SLAU.xls
х1 | 0,7500 | 0,0000 | 0,0000 | 0,0000 | 0,7500 | 0,0000 | |
х2 | 1,0000 | -0,3750 | 0,0000 | 0,0000 | 0,6250 | 0,0000 | 1 |
х3 | 0,6667 | -0,2500 | 0,0000 | 0,0000 | 0,4167 | 0,0000 | |
х4 | 1,7500 | -0,1875 | -0,3125 | -0,3125 | 0,9375 | 0,0000 |
х1 | 0,7500 | -0,4688 | -0,2084 | -0,2344 | -0,1615 | 0,7500 | |
х2 | 1,0000 | 0,0807 | -0,2778 | -0,3125 | 0,4904 | 0,6250 | 2 |
х3 | 0,6667 | 0,0538 | -0,4167 | -0,4688 | -0,1649 | 0,4167 | |
х4 | 1,7500 | 0,0404 | -0,2452 | 0,1237 | 1,6688 | 0,9375 |
х1 | 0,7500 | -0,7499 | 0,5000 | -0,5000 | 0,0000 | 0,0000 | |
х2 | 1,0000 | 0,0000 | 0,6666 | -0,6667 | 0,9999 | 0,9999 | 30 |
х3 | 0,6667 | 0,0000 | -0,6666 | -1,0000 | -0,9999 | -0,9999 | |
х4 | 1,7500 | 0,0000 | -0,5000 | 0,7500 | 2,0000 | 2,0000 |
Решение, наиболее близкое к точному, получено на 30 шаге вычислений
Х1=0
Х2=0,9999
Х3=0,9999
Х4=2
Найдём
:xi | xi* | |xi-xi*| |
0 | 0,0000 | 0,0000 |
1 | 0,9999 | -0,0001 |
-1 | -0,9999 | 0,0001 |
2 | 2,0000 | 0,0000 |
max | 0,0001 |
Вывод: МПИ - быстрее сходится, но обладает меньшей точностью, чем метод Зейделя, который дольше сходится.
Х | У |
-2,00 | -3,00 |
0,00 | 2,00 |
1,00 | 0,00 |
3,00 | 2,00 |
4,00 | 1,00 |
5,00 | 0,00 |
Для вычислений используем splain.xls
Найдем
:hi=xi - xi-1 | |
h0 | 2,00 |
h1 | 1,00 |
h2 | 2,00 |
h3 | 1,00 |
h4 | 1,00 |
Для вычисления q будем использовать метод прогонки.
Вычислим массивы коэффициентов a,b,c и правой части d:
a | b | c | d | |
0 | 0,0000 | 1,0000 | 0,1667 | -4,50 |
1 | 0,1667 | 1,0000 | 0,3333 | 3,00 |
2 | 0,3333 | 1,0000 | 0,1667 | -2,00 |
3 | 0,1667 | 0,6667 | 0,0000 | 0,00 |
Вычисление прогоночных коэффициентов:
A[ ] | B[ ] |
0,00 | 0,00 |
-0,16667 | -4,5 |
-0,34286 | 3,857143 |
-0,18817 | -3,70968 |
0 | 0,973202 |
Теперь вычисляем
x | y |
-2 | -3 |
-1,9 | -2,62093 |
-1,8 | -2,24381 |
-1,7 | -1,87056 |
-1,6 | -1,50314 |
-1,5 | -1,14348 |
-1,4 | -0,79353 |
-1,3 | -0,45522 |
-1,2 | -0,13049 |
-1,1 | 0,178702 |
-1 | 0,47043 |
-0,9 | 0,74275 |
-0,8 | 0,99372 |
-0,7 | 1,221401 |
-0,6 | 1,423849 |
-0,5 | 1,599126 |
-0,4 | 1,74529 |
-0,3 | 1,860401 |
-0,2 | 1,942516 |
-0,1 | 1,989696 |
0 | 2 |
0,1 | 1,852492 |
0,2 | 1,673571 |
0,3 | 1,470644 |
0,4 | 1,251116 |
0,5 | 1,02239 |
0,6 | 0,791874 |
0,7 | 0,566972 |
0,8 | 0,355088 |
0,9 | 0,163629 |
1 | 0 |
1,1 | 0,005772 |
1,2 | 0,043163 |
1,3 | 0,108555 |
1,4 | 0,198332 |
1,5 | 0,308877 |
1,6 | 0,436575 |
1,7 | 0,577807 |
1,8 | 0,728958 |
1,9 | 0,886412 |
2 | 1,046551 |
2,1 | 1,205759 |
2,2 | 1,360419 |
2,3 | 1,506916 |
2,4 | 1,641631 |
2,5 | 1,760949 |
2,6 | 1,861253 |
2,7 | 1,938927 |
2,8 | 1,990354 |
2,9 | 2,011917 |
3 | 2 |
3,1 | 1,989668 |
3,2 | 1,946922 |
3,3 | 1,876445 |
3,4 | 1,78292 |
3,5 | 1,67103 |
3,6 | 1,545457 |
3,7 | 1,410885 |
3,8 | 1,271996 |
3,9 | 1,133473 |
4 | 1 |
4,1 | 0,872264 |
4,2 | 0,753286 |
4,3 | 0,642094 |
4,4 | 0,537715 |
4,5 | 0,439175 |
4,6 | 0,345501 |
4,7 | 0,255719 |
4,8 | 0,168858 |
4,9 | 0,083942 |
5 | 0 |