Смекни!
smekni.com

Обусловленность матрицы (стр. 1 из 3)

Министерство образования и науки российской федерации

Федеральное агентство по образованию

Новосибирский государственный технический университет

Бердский филиал

Расчетно-графическая работа

по курсу: «Вычислительная математика»

Выполнила:

Студентка II курса

Булгакова Н.

Группы ВТБ-81

Проверил:

Преподаватель

Голубева Елена Николаевна

г.362964Бердск,

2010

Задание 1 Обусловленность матрицы

Задание: Дана система уравнений ax=b порядка n. Исследовать зависимость погрешности решения x от погрешностей правой части системы b.

погрешность уравнение координата интерполяция дифференциальный

1. Задать матрицу системы A и вектор правой части b, найти решение x системы Ax=b с помощью метода Гаусса.

2. Принимая решение x, полученное в п.1, за точное, вычислить вектор

относительных погрешностей решений
систем
,где компоненты векторов
вычисляются по формулам:

(

-произвольная величина погрешности).

3. На основе вычисленного вектора d построить гистограмму. По гистограмме определить компоненту

, вектора b, которая оказывает наибольшее влияние на погрешность решения.

4. Вычислить число обусловленности cond(A) матрицы A.

5. Оценить теоретически погрешность решения

по формуле:

Сравнить значение

со значением практической погрешности
Объяснить полученные результаты.

Решение

1. Задаём матрицу А.

Для заполнения используем код программы zapolnenie.cpp (см. приложение)

#include <iostream.h>

#include <stdio.h>

#include <conio.h>

#include <math.h>

#include <windows.h>

#include <dos.h>

main()

{

double matr[100][100];

for (int i=1;i<7;i++)

{

for (int j=1;j<7;j++)

matr[i][j]= 1000/(3*(pow(0.1*21*i*j,2))+pow(0.1*21*i*j,3));

}

for ( int j=1;j<7;j++)

{

for ( int i=1;i<7;i++)

printf("%10.4f",matr[j][i]);

printf("&bsol;n");

}

getchar();

}

Результатработы zapolnenie:

Найдем решение полученной матрицы используя программу gauss.cpp (см приложение)

Исходныйкодgauss.cpp:

#include <iostream.h>

#include <stdio.h>

#include <windows.h>

#include <math.h>

#include <conio.h>

#include <dos.h>

const int sz=6;


double A[sz][sz]={

{44.4622, 7.8735, 2.7092, 1.2432, 0.6719, 0.4038},

{7.8735, 1.2432, 0.4038, 0.1789, 0.0945, 0.0558},

{2.7092, 0.4038, 0.1278, 0.0558, 0.0292, 0.0172},

{1.2432, 0.1789, 0.0558, 0.0242, 0.0126, 0.0074},

{0.6719, 0.0945, 0.0292, 0.0126, 0.0065, 0.0038},

{0.4038, 0.0558, 0.0172, 0.0074, 0.0038, 0.0022}

} ;

double F[sz]={21.00,21.00,21.00,21.00,21.00,21.00} ;

double X[sz];

double b[sz+1],par;

// функция вывода матрицы на экран

voidViv(doubleA[sz][sz])

{

int i,j;

for( i=0;i<sz; i++)

{

for( j=0;j<sz; j++)

printf(" %.4f ",A[i][j]); //вывод на экрам исходной матрицы с заданным количеством знаков после запятой (5f)

printf(" %.4f ",F[i]);

cout<<endl;

}

system("pause");

}

/////////////// функция решения методом Гаусса

void Resh(double A[sz][sz],double F[sz],double X[sz])

{

int i,j,k;

for (k=0;k<sz;k++)

{

// проверяем первый элемент

if (A[k][k]==0) //проверка на неноль

{

for (i=k;A[i][k]==0;i++); // находим ненулевой 1й элемент

for(j=k;j<sz;j++) // меняем строки в матрице

{

par=A[k][j]; //смена строк в матрице

A[k][j]=A[i][j]; //путем записи в par и извлечения из него

A[i][j]=par;

}

par=F[k]; // смена строк в ответе

F[k]=F[i];

F[i]=par;

}

// получаем 1й элемент единицу (делим всю первую строку на a1,1 )

par=A[k][k]; //пишем в par первый элемент

for(int i=k;i<sz;i++)

A[k][i]=A[k][i]/par;

F[k]=F[k]/par; // делимответна 1й


// нулевойстолбец

for(int j=k+1;j<sz;j++)

{

for(int i=k;i<sz;i++)

b[i]=A[k][i]*A[j][k];

b[sz]= F[k]*A[j][k];

for(int i=k;i<sz;i++)

A[j][i]-=b[i];

F[j]-=b[sz];

}

}

for(i=sz-1;i>=0;i--) //обратка

{

par=0;

for (j=0;j<sz-1-i;j++)

par+=A[i][sz-j-1]*X[sz-1-j];

X[i]=F[i]-par;

}

}

//функция - точка входа в программу

void main()

{

Viv(A); // выводим матрицу

Resh(A,F,X); // решаем матрицу A методом Гаусса

for(int i=0;i<sz;i++) printf("&bsol;nX[%d]= %.5f &bsol;n&bsol;r",i,X[i]); // выводрезультата


system("pause");

}

Результат работы gauss:

====================================================

точное

====================================================

44.4622 7.8735 2.7092 1.2432 0.6719 0.4038 21.0000

7.8735 1.2432 0.4038 0.1789 0.0945 0.0558 21.0000

2.7092 0.4038 0.1278 0.0558 0.0292 0.0172 21.0000

1.2432 0.1789 0.0558 0.0242 0.0126 0.0074 21.0000

0.6719 0.0945 0.0292 0.0126 0.0065 0.0038 21.0000

0.4038 0.0558 0.0172 0.0074 0.0038 0.0022 21.0000

Для продолжения нажмите любую клавишу . . .

X[0]= 872.15582

X[1]= -16329.24792

X[2]= 10011.59140

X[3]= 111650.80126

X[4]= -26697.87796

X[5]= -144076.29603

Для продолжения нажмите любую клавишу . . .

======================================================


2. Вычисляем вектор d.

Величина погрешности, вносимой в правую часть системы – 1%.

Сформируем векторы b (по заданному закону)

b1 b2 b3 b4 b5 b6
20,79 21 21 21 21 21
21 20,79 21 21 21 21
21 21 20,79 21 21 21
21 21 21 20,79 21 21
21 21 21 21 20,79 21
21 21 21 21 21 20,79

Для каждого из них найдем решение матрицы, используя gauss

С погрешностью в …. компоненте

======================================================

в первой

======================================================

44.4622 7.8735 2.7092 1.2432 0.6719 0.4038 20.7900

7.8735 1.2432 0.4038 0.1789 0.0945 0.0558 21.0000

2.7092 0.4038 0.1278 0.0558 0.0292 0.0172 21.0000

1.2432 0.1789 0.0558 0.0242 0.0126 0.0074 21.0000

0.6719 0.0945 0.0292 0.0126 0.0065 0.0038 21.0000

0.4038 0.0558 0.0172 0.0074 0.0038 0.0022 21.0000

Для продолжения нажмите любую клавишу . . .

X[0]= 872.07580

X[1]= -16327.25169


X[2]= 10005.24500

X[3]= 111652.84781

X[4]= -26679.82743

X[5]= -144100.68447

Для продолжения нажмите любую клавишу . . .

======================================================

во второй

======================================================

44.4622 7.8735 2.7092 1.2432 0.6719 0.4038 21.0000

7.8735 1.2432 0.4038 0.1789 0.0945 0.0558 20.7900

2.7092 0.4038 0.1278 0.0558 0.0292 0.0172 21.0000

1.2432 0.1789 0.0558 0.0242 0.0126 0.0074 21.0000

0.6719 0.0945 0.0292 0.0126 0.0065 0.0038 21.0000

0.4038 0.0558 0.0172 0.0074 0.0038 0.0022 21.0000

Для продолжения нажмите любую клавишу . . .

X[0]= 874.15205

X[1]= -16398.19981

X[2]= 10378.69292

X[3]= 111250.49388

X[4]= -27254.14851


X[5]= -143256.57148

Для продолжения нажмите любую клавишу . . .

======================================================

в третьей

======================================================

44.4622 7.8735 2.7092 1.2432 0.6719 0.4038 21.0000

7.8735 1.2432 0.4038 0.1789 0.0945 0.0558 21.0000

2.7092 0.4038 0.1278 0.0558 0.0292 0.0172 20.7900

1.2432 0.1789 0.0558 0.0242 0.0126 0.0074 21.0000

0.6719 0.0945 0.0292 0.0126 0.0065 0.0038 21.0000

0.4038 0.0558 0.0172 0.0074 0.0038 0.0022 21.0000

Для продолжения нажмите любую клавишу . . .

X[0]= 865.80942

X[1]= -15962.14640

X[2]= 7652.50187

X[3]= 114149.98680

X[4]= -23271.06118

X[5]= -148104.07985

Для продолжения нажмите любую клавишу . . .

======================================================

в четвёртой

======================================================

44.4622 7.8735 2.7092 1.2432 0.6719 0.4038 21.0000

7.8735 1.2432 0.4038 0.1789 0.0945 0.0558 21.0000

2.7092 0.4038 0.1278 0.0558 0.0292 0.0172 21.0000

1.2432 0.1789 0.0558 0.0242 0.0126 0.0074 20.7900

0.6719 0.0945 0.0292 0.0126 0.0065 0.0038 21.0000

0.4038 0.0558 0.0172 0.0074 0.0038 0.0022 21.0000

Для продолжения нажмите любую клавишу . . .

X[0]= 874.20237

X[1]= -16729.55530

X[2]= 12510.77695

X[3]= 111600.37766

X[4]= -35532.05319

X[5]= -138409.12992

Для продолжения нажмите любую клавишу . . .

======================================================

в пятой

======================================================

44.4622 7.8735 2.7092 1.2432 0.6719 0.4038 21.0000

7.8735 1.2432 0.4038 0.1789 0.0945 0.0558 21.0000

2.7092 0.4038 0.1278 0.0558 0.0292 0.0172 21.0000

1.2432 0.1789 0.0558 0.0242 0.0126 0.0074 21.0000

0.6719 0.0945 0.0292 0.0126 0.0065 0.0038 20.7900

0.4038 0.0558 0.0172 0.0074 0.0038 0.0022 21.0000

Для продолжения нажмите любую клавишу . . .


X[0]= 890.20635

X[1]= -16885.51847

X[2]= 13438.40819

X[3]= 102816.62603

X[4]= -16375.93145

X[5]= -148185.68530

Для продолжения нажмите любую клавишу . . .

======================================================

в шестой

=====================================================

44.4622 7.8735 2.7092 1.2432 0.6719 0.4038 21.0000

7.8735 1.2432 0.4038 0.1789 0.0945 0.0558 21.0000

2.7092 0.4038 0.1278 0.0558 0.0292 0.0172 21.0000

1.2432 0.1789 0.0558 0.0242 0.0126 0.0074 21.0000

0.6719 0.0945 0.0292 0.0126 0.0065 0.0038 21.0000

0.4038 0.0558 0.0172 0.0074 0.0038 0.0022 20.7900

Для продолжения нажмите любую клавишу . . .

X[0]= 847.76738

X[1]= -15509.52337

X[2]= 5983.80758


X[3]= 117317.96737

X[4]= -30807.26724

X[5]= -140960.86219

Для продолжения нажмите любую клавишу . . .

На основе полученных значений сформируем вектор d

РЕШЕНИЯ С ПОГРЕШНОСТЯМИ
точное в первой во втророй в третьей в четвёртой в пятой в шестой
872,1558 872,0758 874,1521 865,8094 874,2024 890,2064 847,7674
-16329,2479 -16327,2517 -16398,1998 -15962,1464 -16729,5553 -16885,5185 -15509,5234
10011,5914 10005,2450 10378,6929 7652,5019 12510,7770 13438,4082 5983,8076
111650,8013 111652,8478 111250,4939 114149,9868 111600,3777 102816,6260 117317,9674
-26697,8780 -26679,8274 -27254,1485 -23271,0612 -35532,0532 -16375,9315 -30807,2672
-144076,2960 -144100,6845 -143256,5715 -148104,0799 -138409,1299 -148185,6853 -140960,8622
x-xi
||x|| 0,0800 1,9962 6,3464 2,0466 18,0505 24,3884
111650,8013 1,9962 68,9519 367,1015 400,3074 556,2705 819,7245
6,3464 367,1015 2359,0895 2499,1856 3426,8168 4027,7838
2,0466 400,3074 2499,1855 50,4236 8834,1752 5667,1661
18,0505 556,2705 3426,8168 8834,1752 10321,9465 4109,3893
24,3884 819,7245 4027,7838 5667,1661 4109,3893 3115,4338
||x-xi|| i:1…6 d
24,3884 0,000218435
819,7245 0,00734186
4027,7838 0,036074831
8834,1752 0,079123259
10321,9465 0,092448477
5667,1661 0,050757953

(см. файл «Вектор и гистограмма.xls»)