Смекни!
smekni.com

Приближенное решение интегрального уравнения (стр. 2 из 4)


Решив эту систему относительно

, получим

(15)

При i=n-2,…,1 используем формулу (12)

вычисляем из второго уравнения системы (10)

(16)

В результате вычислений получим таблицу:

Таблица №1

Прямой ход Обратный ход
i xi pi qi fi mi ki ci di yi
0 0 0 0 8.1548 -2 1 -1.125 0.081548 3.049606
1 0.1 -0.2 0.03 6.9025 -2.02 1.0203 -1.14658 0.162629 2.744645
2 0.2 -0.4 0.12 5.8327 -2.04 1.0412 -1.18177 0.252476 2.521233
3 0.3 -0.6 0.27 4.9907 -2.06 1.0627 -1.24358 0.366984 2.361553
4 0.4 -0.8 0.48 4.3818 -2.08 1.0848 -1.36806 0.538893 2.250789
5 0.5 -1 0.75 4.0188 -2.1 1.1075 -1.70977 0.856677 2.176909
6 0.6 -1.2 1.08 3.9098 -2.12 1.1308 -5.35913 1.695401 2.130132
7 0.7 -1.4 1.47 4.0581 -2.14 1.1547 0.247024 10.53205 2.10254
8 0.8 -1.6 1.92 4.4615 -2.16 1.1792 -0.40795 -3.02327 2.087729
9 0.9 -1.8 2.43 5.1129 -2.18 1.2043 -0.59217 -1.43418 2.080518
10 1 -2 3 6 -2.2 1.23 -0.67952 -0.98461 2.076684

2. Пусть

В результате вычислений по формулам (9)-(16) получим таблицу:

Таблица №2

Прямой ход Обратный ход
i xi pi qi fi mi ki ci di yi
0 0 0 0 8.1548 -2 1 -1.125 0.081548 2.048941
1 0.2 -0.4 0.12 5.8327 -2.04 1.0412 -1.15121 0.156074 1.844047
2 0.4 -0.8 0.48 4.3818 -2.08 1.0848 -1.20313 0.247519 1.720701
3 0.6 -1.2 1.08 3.9098 -2.12 1.1308 -1.31665 0.407622 1.650761
4 0.8 -1.6 1.92 4.4615 -2.16 1.1792 -1.64636 0.835965 1.619574
5 1 -2 3 6 -2.2 1.23 -5.71492 5.936293 1.63769

Рис.3-

- решение, полученное с помощью метода прогонки с использованием конечно-разностных отношений (h=0,1),
- решение, полученное с помощью метода прогонки с использованием конечно разностных отношений (h=0,2) ,
- точное решение

II. Методы Галеркина, Ритца и коллокаций

Пусть дано дифференциальное уравнение второго порядка и его граничные условия

(17)

1. Метод Галеркина

Введем операторы

На отрезке [a, b] выберем систему базисных функций

Проверим систему на ортогональность


Выбранная система базисных функций является ортогональной и удовлетворяет условию выбора конечной системы базисных функций

Решение краевой задачи (17) ищется в виде

1. Рассмотрим решение задачи (17) с двумя базисными функциями:

Тогда решение

Рассмотрим выражение

(18)

Выражение (18) называется невязкой. Для задачи (1) с двумя базисными функциями

сi выбирается таким образом, чтобы

Так как

ортогональна ко всем базисным функциям, то

Тогда решение задачи (17)

2. Рассмотрим решение задачи (17) с тремя базисными функциями

Тогда решение

Невязка примет вид


Коэффициенты с1 и с2 будем искать из системы

Тогда решение задачи (17)

2. Метод коллокации

Введем операторы

На отрезке [a, b] выберем систему базисных функций

Будем искать решение задачи (17) в виде

1. Рассмотрим решение задачи (17) с двумя базисными функциями

Тогда решение

Составим невязку

На отрезке [-π, π] выберем за точку коллокации 0.

Таким образом, решение задачи (17)

.

2. Рассмотрим решение задачи (17) с тремя базисными функциями

Тогда решение

Составим невязку

На отрезке [-π, π] выберем две точки коллокации: 0 и

. Составим систему уравнений

Таким образом, решение задачи (17)


3. Метод Ритца

Составим функционал по формуле

(19)

На отрезке [a, b] выберем систему базисных функций

Будем искать решение задачи (17) в виде

Подставим

в (19)

Составим систему уравнений относительно с1, с2

Таким образом, решение задачи (17)

Рис.4- у1(х)-решение, полученное с помощью метода Галеркина (две базисные функции), у2(х)-решение, полученное с помощью метода коллокации (две базисные функции)


Рис.4-у2(х)- решение, полученное с помощью метода Галеркина (три базисные функции), у4(х)- решение, полученное с помощью метода коллокации (три базисные функции), у5(х)- решение, полученное с помощью метода Ритца (три базисные функции)

Замечание: найти решение методом Ритца для двух базисных функций не удалось, т.к. функция Ф(с1) не квадратична относительно переменной с1 и не удовлетворяет условию существования экстремума