Смекни!
smekni.com

Теория эллиптических интегралов и эллиптических функций (стр. 4 из 4)

Заметив, что

есть эллиптическая функция с теми же периодами, что и Ф (z), того же порядка и с теми же нулями и полюсами, мы на основании теоремы 2 (следствие 2) заключаем:

Откуда

. (11)

Полагая

Найдем

, (12)

где

- полином третьей степени относительно
. Таким образом,

эллиптическая функция второго порядка

и в случае двойного полюса может быть рассмотрена как обращение эллиптического интеграла первого рода вида (12).


2. Примеры. приложения

2.1 Вычисление длины дуги эллипса

Для начала введем понятие эллиптического интеграла. Эллиптическим интегралом называется интеграл вида

(13)

где R – рациональная функция своих аргументов и

- многочлен третьей или четвертой степени. В отдельных случаях этот интеграл может выражаться через элементарные функции, как например, интеграл

В этом случае он называется псевдоэллиптическим.

Вообще же интеграл (13) не выражается в элементарных функциях. Можно показать, что с помощью элементарных подстановок и преобразований эллиптический интеграл преобразуется к одной из трех канонических форм

(14)

где k и l – постоянные. Интегралы (14) называют эллиптическими интегралами в форме Лежандра, соответственно, первого, второго и третьего рода. Число k называют модулем интеграла.

Подстановка

приводит интегралы (14) к тригонометрической форме

(15)

Аргумент

называется амплитудой эллиптического интеграла. Для интегралов в форме (15) приняты следующие обозначения:

Особенно часто встречаются интегралы с амплитудой

, равной
; они называются полными и для первых двух из них приняты специальные обозначения

Вычисление дуги эллипса

приводит к эллиптическим интегралам. Действительно, отрезок дуги, соответствующий изменению абсциссы от 0 до x равен

Где

Это – эллиптический интеграл второго рода в форме Лежандра. Полная длина эллипса выражается через эллиптический интеграл

(16)

Этому обстоятельству и обязаны своим названием эллиптические интегралы, а также их обращения – эллиптические функции.


2.2 Эллиптические координаты

Эллиптические координаты также связаны с эллиптическим функциями. Чтобы ввести их, рассмотрим уравнение

(17)

оно третьей степени по pимеет при фиксированных x, y, z три действительных корня

,
,
, удовлетворяющих неравенству

.

Эти корни называются эллиптическими координатами точки (x, y, z). Система координат (

,
,
) ортогональна, так как поверхности

представляют собой, соответственно, софокусный эллипсоид, однополосный и двуполосный гиперболоиды, т.е. взаимно ортогональные поверхности (рис. 2).

Нетрудно вывести формулы, выражающие декартовы координаты через эллиптические. Для этого достаточно привести левую часть (17) к общему знаменателю и, заметив, что в числителе при этом получится многочлен третьей степени относительно p со старшим коэффициентом -1, разложить его на линейные множители


Рисунок 2

Чтобы получить (18), остается умножить обе части, соответственно, на

,
,
и положить

(18)

Заключение

Мы дали аналитическое представление для любой эллиптической функции, отталкиваясь от сформулированного ее дескриптивного определения. Для рациональных функций мы имеем два аналитических представления. В основе перового из них лежит задание полюсов рациональной функции и соответствующих им главных частей, что приводит нас к разложению рациональной функции на простейшие дроби. В основе второго аналитического представления рациональной функции лежит задание ее нулей и полюсов, что дает нам возможность представить ее в виде отношения произведений линейных множителей.


Библиографический список

1. Лаврентьев М.А Методы теории функций комплексного переменного/ М.А.

Лаврентьев, Б.В. Шабат. – М.: Лань, 2002 – 688 с.

2. Лунц Г.Л. Функции комплексного переменного с элементами операционного

исчисления/ Г.Л. Лунц, Л.Э. Эльсгольц. – М.: Лань, 2002 – 304 с.

3. Маркушевич А.А. Введение в теорию аналитических функций/ А.И

Маркушевич, А.А. Маркушевич. – М.: Просвещение, 1977 – 320 с.

4. Привалов И.И. Введение в ТФКП/ И.И. Привалов – М.: Высш. шк., 1999 –

432 с.

5. Эйдман В.Я. Основы теории функций комплексного переменного и

операционного исчисления/ В.Я. Эйдман. – М.: Физмат, 2002 – 256 с.