Смекни!
smekni.com

Теория эллиптических интегралов и эллиптических функций (стр. 1 из 4)

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Амурский государственный университет

(ГОУ ВПО «АмГУ»)

Кафедра математического анализа и моделирования

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К КУРСОВОЙ РАБОТЕ

на тему: Эллиптические функции

по дисциплине: Теория функций комплексного переменного

Исполнитель

студент группы

Руководитель

Нормоконтроль

Благовещенск 2007


Реферат

Работа 21с., 2 рисунка, 5 источников.

Эллиптические функции, эллиптические интегралы, эллиптические координаты, полюс, мероморфность, конгруэнтность, голоморфность, свойства.

В этой работе будут рассмотрены свойства эллиптических интегралов и эллиптических функций. Эллиптические функции встречаются во многих задачах динамики твердого тела, аэродинамики, электротехники, теории упругости и др. Начнем с изложения общих свойств мероморфных периодических функций, в совокупность которых входит, в частности, и класс эллиптических функций. Одна из наших задач заключается в том, чтобы построить посредством того или иного аналитического аппарата элементы, с помощью которых можно выразить в конечном виде все эллиптические функции.

интеграл эллиптическая функция


Содержание

Введение

1 Общие свойства эллиптических функций

1.1 Определение эллиптической функции

1.2 Параллелограммы периодов

1.3 Основные теоремы

1.4 Эллиптические функции второго порядка

2 Примеры. Приложения

2.1 Вычисление длины дуги эллипса

2.2 Эллиптические координаты

Заключение

Библиографический список


1. Общие свойства эллиптических функций

1.1 Определение эллиптической функции

Эллиптической функцией называется мероморфная функция, допускающая периоды, которые все могут быть образованы посредством сложения и вычитания из двух первоначальных периодов 2

и 2
, имеющих мнимое отношение

.

Короче говоря, мероморфная функция называется эллиптической, если она двоякопериодическая с периодами 2

и 2
, отношение которых
есть мнимое число. Такая функция f(z) удовлетворяет соотношениям

(1)

откуда вытекает, что

(2)

где m и n обозначают любые целые числа, положительные, отрицательные или нули.

Установим две формулы для эллиптической функции, из которых одна будет давать ее разложение на сумму простейших элементов с явным выделением ее полюсов и их главных частей, а другая будет представлять эллиптическую функцию посредством отношения произведений элементарных множителей с явным выделением ее нулей и полюсов. Прежде чем приступить к осуществлению этой задачи, мы установим ряд общих свойств эллиптической функции.

Примечание - при определении эллиптической функции предполагалось, что отношение

ее первоначальных периодов является мнимым числом. Если это отношение есть число действительное, то функция является просто периодической или приводится к постоянному. Кроме того, во всем дальнейшем будем считать коэффициент при мнимой части отношения

положительным, так как это достижимо путем изменения знака у одного из первоначальных периодов.

1.2 Параллелограммы периодов

Чтобы дать геометрическое истолкование двоякой периодичности, рассмотрим в плоскости комплексного переменного четыре точки

считая

произвольным комплексным числом.

Так как отношение

есть мнимое число, то эти четыре точки изображают вершины некоторого параллелограмма P.

Полагая


,

мы видим, что четыре точки, упомянутые выше, есть вершины параллелограмма

, который может быть получен из основного параллелограмма
посредством некоторого сдвига.

Придавая mи nвсевозможные целые значения, мы получим сеть параллелограммов

, конгруэнтных между собой и покрывающих всю плоскость (рис. 1).

Чтобы любые два параллелограмма нашей сети не имели общих точек, условимся причислять к каждому параллелограмму

лишь часть его границы, а именно стороны

,

,

за исключением концов

Рисунок 1 – Сеть параллелограммов


Что же касается двух сторон параллелограмма

, мы их будем рассматривать принадлежащими к смежным параллелограммам с
. Тогда любая точка плоскости принадлежит одному и только одному из этих параллелограммов, например
.

Точки вида

,

где

и
- любые целые числа, называются конгруэнтными или эквивалентными с точкой z; в параллелограммах
они занимают то же положение, что и точка z в
.

Среди этих эквивалентных точек имеется одна точка, которая принадлежит основному параллелограмму P(эта точка

.

Итак, можно сказать, что всякая точка плоскости эквивалентна некоторой и притом единственной точке основного параллелограмма Р. Будем называть параллелограммы

параллелограммами периодов; выбор среди них основного параллелограмма Р, очевидно, произволен. Теперь можно геометрически истолковать соотношение (2). Они выражают, что функция f(z) принимает одно и то же значение во всех эквивалентных точках. Следовательно, достаточно изучить эллиптическую функцию в одном из параллелограммов, чтобы знать ее поведение во всей плоскости.

1.3 Основные теоремы

Теорема 1. Производная эллиптической функции есть также функция эллиптическая. В самом деле, дифференцируя соотношение (1), имеющее место при любом z, получаем


Таким образом, производная f’(z) имеет те же периоды 2

и 2
, что и первоначальная функция. С другой стороны, будучи однозначной, как и f(z), f’(z) не может иметь на конечном расстоянии других особых точек, кроме полюсов, так как если f(z) голоморфна в некоторой точке, то производная f’(z) тоже голоморфна в этой точке, а если f(z) имеет полюс в некоторой точке, то и f’(z) будет иметь полюс в этой точке. Следовательно, f’(z) есть мероморфная функция, допускающая два периода 2
и 2
, и согласно определению она будет эллиптической функцией с теми же периодами, что и первоначальная функция.

Теорема 2. Эллиптическая функция, отличная от постоянного, имеет по крайней мере один полюс в параллелограмме периодов.

Действительно, допуская противное, мы имели бы целую функцию, отличную от постоянного. Ее параллелограмм периодов есть ограниченная часть плоскости и в этой области, включая ее границу, наша функция голоморфна, а значит, и подавно непрерывна, а потому и ограничена. Следовательно, существует такое положительное число М, что во всем основном параллелограмме периодов имеем