6
out =
0 3.7321 0.2680 0.0100 0.0100
1.0000 3.7321 0.2680 -1.3467 0.0967
2.0000 2.3854 0.3646 -0.3973 0.0992
3.0000 1.9881 0.4638 -0.0536 0.0490
4.0000 1.9345 0.5128 -0.0026 0.0047
5.0000 1.9319 0.5176 0.0000 0.0001
6.0000 1.9319 0.5176 0.0000 0.0000
Метод Рунге - Кутта 4го порядка
t =
0
h =
0.1000
y =
3 0
…
t =
1
h =
1.1102e-016
y =
3.7294 0.2664
Kоличество шагов =
11
Количество итераций равно
6
out =
0 3.7294 0.2664 0.0100 0.0100
1.0000 3.7294 0.2664 -1.3449 0.0978
2.0000 2.3845 0.3642 -0.3965 0.0995
3.0000 1.9880 0.4637 -0.0535 0.0492
4.0000 1.9345 0.5128 -0.0026 0.0047
5.0000 1.9319 0.5176 0.0000 0.0001
6.0000 1.9319 0.5176 0.0000 0.0000
Видно, что графики приближенных решений по методам Рунге-Кутта ненамного отличаются. Лишь при выводе на экран численных значений решения, можно увидеть отличия. При этом более точное приближенное решение получилось у метода Рунге-Кутта второго порядка (при использовании метода Рунге-Кутта первого порядка получилось приближенное решение, где первая составляющая чуть больше уточненного, а вторая – чуть меньше; при использовании же метода Рунге-Кутта четвертого порядка наоборот). Но на данном этапе нет необходимости получать более точное решение, поэтому с точки зрения вычислительных затрат целесообразнее использовать метод Рунге-Кутта первого порядка
При использовании дискретного метода Ньютона для уточнения решения метод сходится за 2-3 итерации. При чем точность можно регулировать с помощью допустимой ошибки: чем меньше мы зададим допустимую ошибку, тем больше точность.
Можно прийти к выводу, что целесообразнее при решении нелинейных САУ методом дифференцирования по параметру использовать для вычисления приближенного решения метод Рунге-Кутта первого порядка. Так как необходимую точность можно получить потом при уточнении решения. А шаг интегрирования можно даже выбрать 0.5, то есть достаточно большим. Метод сойдется, а вычислительных затрат будет меньше. При уточнении же дискретным методом Ньютона все равно получится достаточно точное решение, а количество итераций станет ненамного больше.
Метод дифференцирования по параметру обладает глобальной сходимостью, поэтому он сойдется даже при достаточно неточном первоначальном приближении (это проверено при Х0 = (3 0)).
Итак, при решении систем нелинейных уравнений методом дифференцирования по параметру получаются достаточно точные значения. Можно сделать вывод, что данный метод эффективен.
В заключении можно сказать, что проведенное исследование оказалось успешным, задачи, поставленные вначале проекта, выполнены. В работе исследовано влияние метода интегрирования на точность получаемого решения. Получены сведения о зависимости точности интегрирования от величины шага; о зависимости получаемого уточненного решения от величины допустимой ошибки и от начального приближенного решения; а также от выбора порядка метода Рунге – Кутта для получения приближенного решения.
1. Бахвалов Н.С. Численные методы. - Часть1.- М: Наука, 1975. – 632с.
2. Кузьмик П.К., Маничев В.Б. Автоматизация функционального проектирования. Кн.5. Системы автоматизированного проектирования/ Под ред. И.П. Норенкова. – М: Высшая школа, 1986. – 144 с.
3. Потабенко Н.А. Численные методы. – М.: Изд-во МАИ, 1997. – 88с.: ил.
4. Сарычева О.М. Численные методы в экономике. Конспект лекций. – Новосибирск, 1995. – 65с.