Подставляя (11), (12) в задачу (1)-(4), получим явную конечно-разностную схему для этой задачи в форме
(13)В каждом уравнении этой задачи все значения сеточной функции известны, за исключением одного,
, которое может быть определено явно из соотношений (13). В соотношения (13) краевые условия входят при значениях j=1 и j=N-l, a начальное условие – при k = 0.Если в (12) дифференциальный оператор по пространственной переменной аппроксимировать отношением конечных разностей на верхнем временном слое:
, (14)то после подстановки (11), (14) в задачу (1)-(4) получим неявную конечно-разностную схему для этой задачи:
(15)Теперь сеточную функцию
на верхнем временном слое можно получить из решения (15) с трехдиагональной матрицей. Эта СЛАУ в форме, пригодной для использования метода прогонки, имеет видгде
; ; , ; ; ; ; .Шаблоном конечно-разностной схемы называют ее геометрическую интерпретацию на конечно-разностной сетке. На рисунке приведены шаблоны для явной и неявной конечно-разностных схем при аппроксимации задачи.
Рисунок 2 - Шаблон явной конечно-разностной схемы для уравнения теплопроводности
Рисунок 3 - Шаблон неявной конечно-разностной схемы для уравнения теплопроводности
В случае явных схем значения функции в узле очередного слоя можно найти, зная значения в узлах предыдущих слоев. В случае неявных схем для нахождения значений решения в узлах очередного слоя приходится решать систему уравнений. Для проведения вычислений самой простой схемой оказывается первая: достаточно на основании начального условия найти значения функции в узлах слоя
, чтобы в дальнейшем последовательно определять значения решения в узлах слоев и т.д. В случае второй схемы, которая является неявной, обязательно приходится решать систему уравнений для нахождения решения сеточной задачи. В любом случае согласно методу сеток будем иметь столько уравнений, сколько имеется неизвестных (значения искомой функции в узлах). Число неизвестных равно числу всех узлов сетки. Решая систему уравнений, получаем решение поставленной задачи.Разрешимость этой системы для явных схем вопросов не вызывает, так как все действия выполняются в явно определенной последовательности. В случае неявных схем разрешимость системы следует исследовать в каждом конкретном случае. Важным вопросом является вопрос о том, на сколько найденные решения хорошо (адекватно) отражают точные решения, и можно ли неограниченно сгущая сетку (уменьшая шаг по осям) получить приближенные решения, сколь угодно близкие к точным решениям? Это вопрос о сходимости метода сеток.
На практике следует применять сходящиеся разностные схемы, причем только те из них, которые являются устойчивыми, то есть при использовании которых небольшие ошибки в начальных или промежуточных результатах не приводят к большим отклонениям от точного решения. Всегда следует использовать устойчивые разностные схемы, проводя соответствующие исследования на устойчивость. Явные схемы просты для организации вычислительного процесса, но имеют один весьма весомый недостаток: для их устойчивости приходится накладывать сильные ограничения на сетку. Неявные схемы свободны от этого недостатка, но есть другая трудность – надо решать системы уравнений большой размерности, что на практике при нахождении решения сложных уравнений в протяженной области с высокой степенью точности может потребовать больших объемов памяти ЭВМ и времени на ожидание конечного результата. К счастью, прогресс не стоит на месте и уже сейчас мощности современных ЭВМ вполне достаточно для решения поставленных перед ними задач.
Вопрос устойчивости будет рассмотрен далее.
1.3 Аппроксимация
Из определения порядка аппроксимации ясно, что чем выше порядок аппроксимации, тем лучше конечно-разностная схема приближается к дифференциальной задаче. Это не означает, что решение по разностной схеме может быть так же близко к решению дифференциальной задачи, так как разностная схема может быть условно устойчивой или абсолютно неустойчивой вовсе.
Для нахождения порядка аппроксимации используется аппарат разложения в ряды Тейлора точных (неизвестных, но дифференцируемых) решений дифференциальной задачи в узлах сетки (подчеркнем: значения сеточной функции uh дискретны, следовательно, не дифференцируемы и поэтому не разлагаются в ряды Тейлора).
1.4 Устойчивость. Исследование устойчивости методом гармонического анализа
конечно-разностная схема устойчива, если для малых возмущений входных данных (начально-краевых условий и правых частей) конечно-разносная схема обеспечивает малые возмущения сеточной функции uhт.е. решение с помощью конечно-разностной схемы находится под контролем входных данных.
Если во входные данные fn входят только начальные условия или только краевые условия, или только правые части, то говорят об устойчивости соответственно по начальным условиям, по краевым условиям или по правым частям.
Из математической физики известно, что решение начально-краевых задач представляется в виде следующего ряда:
, (16)где λn – собственные значения
– собственные значения функции, получаемые из решения соответствующей задачи Штурма-Лиувиля, т.е. решение может быть представлено в виде суперпозиции отдельных гармоник , каждая из которых есть произведение функции времени и функции пространственной переменной, причем последняя по модулю ограничена сверху единицей при любых значениях переменной x.В то же время функция времени
, называемая амплитудной частью гармоники, никак не ограничена, и, по всей вероятности, именно амплитудная часть гармоник является источником неконтролируемого входными данными роста функции и, следовательно, источником неустойчивости.Таким образом, если конечно-разностная схема устойчива, то отношение амплитудной части гармоники на верхнем временном слое к амплитудной части на нижнем временном слое по модулю должно быть меньше единицы.
Если разложить значение сеточной функции
в ряд Фурье по собственным функциям: (17)где амплитудная часть
может быть представлена в виде произведения (18)где
– размерный и постоянный сомножитель амплитудной части,k– показатель степени (соответствующий номеру временного слоя) сомножителя, зависящего от времени.
Тогда подставив (17) в конечно-разностную схему, можно по модулю оценить отношение амплитудных частей на соседних временных слоях.
Однако поскольку операция суммирования линейна и собственные функции ортогональны для различных индексов суммирования, то в конечно-разностную схему вместо сеточных значений достаточно подставить одну гармонику разложения (17) (при этом у амплитудной части убрать индекс n), т.е.
(19)Таким образом, если конечно-разностная схема устойчива по начальным данным, то