т. е. условие (20) является необходимым условием устойчивости.
1.5 Схема Кранка-Николсона
параболическое дифференциальное уравнение конечная разность
Явная конечно разностная схема, записанная в форме
обладает тем достоинством, что решение на верхнем временном слое tk+l получается сразу (без решения СЛАУ) по значениям сеточной функции на нижнем временном слое tk, где решение известно (при k = 0 значения сеточной функции формируются из начального условия). Но эта же схема обладает существенным недостатком, поскольку она является условно устойчивой. С другой стороны, неявная конечно-разностная схема, записанная форме
приводит к необходимости решать СЛАУ, но зато эта схема абсолютно устойчива.
Проанализируем схемы (21) и (22). Пусть точное решение, которое неизвестно, возрастает по времени, т.е.
Для неявной схемы (22) на возрастающем решении, наоборот, решение завышено по сравнению с точным, поскольку оно определяется по значениям сеточной функции на верхнем временном слое.
На убывающем решении картина изменяется противоположным образом: явная конечно-разностная схема завышает решения, а неявная — занижает (Рисунок 4).
На основе этого анализа возникла идея о построении более точной неявно-явной конечно-разностной схемы с весами при пространственных конечно-разностных операторах, причем при измельчении шагов тик точное (неизвестное) решение может быть взято в «вилку» сколь угодно узкую, так как если явная и неявная схемы аппроксимируют дифференциальную задачу и эти схемы устойчивы, то при стремлении сеточных характеристик τ и h к нулю решения по явной и неявной схемам стремятся к точному решению с разных сторон.
Рисунок 4 – Двусторонний метод аппроксимации
Проведенный анализ дал блестящий пример так называемых двусторонних методов, исследованных В. К. Саульевым
Рассмотрим неявно-явную схему с весами для простейшего уравнения теплопроводности:
где θ – вес неявной части конечно-разностной схемы,
θ-1 – вес для явной части
Причем
В соответствии с гармоническим анализом для схемы (23) получаем неравенство
откуда
причем правое неравенство выполнено всегда.
Левое неравенство имеет место для любых значений σ, если
являющаяся условием устойчивости неявно-явной схемы с весами (23), когда вес находится в пределах
Таким образом, неявно-явная схема с весами абсолютно устойчива при
Рассмотрим порядок аппроксимации неявно-явной схемы с весами, для чего разложим в ряд Тейлора в окрестности узла (xj,tk) на точном решении значения сеточных функций
В этом выражении дифференциальный оператор
После упрощения получаем
откуда видно, что для схемы Кранка-Николсона (θ = 1/2) порядок аппроксимации схемы (23) составляет
Используем в уравнение (23) подстановку r=a2k/h2. Но в то же время его нужно решить для трех "еще не вычисленных" значений
для i=2,3,…,n-1. Члены в правой части формулы (26) известны. Таким образом, формула (26) имеет вид линейной трехдиагональной системы АХ=В. Шесть точек, используемых в формуле Кранка-Николсона (26), вместе с промежуточной точкой решетки, на которой основаны численные приближения, показаны на рисунке 5.
Рисунок 5 – Шаблон (схема) метода Кранка-Николсона
Иногда в формуле (26) используется значение r=1. В этом случае приращение по оси t равно
для i=2,3,…,n-1. Граничные условия используются в первом и последнем уравнениях (т. е. в
Уравнения (27) особенно привлекательны при записи в форме трехдиагональной матрицы АХ = В.
Если метод Кранка-Николсона реализуется на компьютере, то линейную систему АХ = В можно решить либо прямым методом, либо итерационным.
2. Практическая часть
2.1 Постановка задачи
Используем метод Кранка-Николсона, чтобы решить уравнение
где xϵ(0;1),
tϵ(0;0.1),
с начальным условием
где t=0,
xϵ(0;1),
и граничными условиями
u(0,t) = g1(t) ≡ 0,
u(1,t) = g2(t) ≡ 0.
2.2 Решение в ППП MatLab
Решение будем искать в ППП MatLab 7. Создадим четыре выполняемых m-фала: crnich.m – файл-функция с реализацией метода Кранка-Николсона; trisys.m – файл-функция метода прогонки; f.m – файл-функция задающая начальное условие задачи; fе.m – файл-функция задающая функцию определяющую точное решение задачи(найдена аналитическим путем). Листинги программ представлены в приложении А.
Для простоты возьмем шаг Δх = h = 0,1 и Δt = к = 0,01. Таким образом, соотношение r =1. Пусть решетка имеет n=11 столбцов в ширину и m=11 рядов в высоту.
2.3 Анализ результатов
Решения для данных параметров отразим в таблице 1. Трехмерное изображение данных из таблицы покажем на рисунке 5.
Таблица 1 – Значения u(хi, ti), полученные методом Кранка-Николсона
xi | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 |
ti | |||||||||||
0 | 0 | 1.1180 | 1.5388 | 1.1180 | 0.3633 | 0 | 0.3633 | 1.1180 | 1.5388 | 1.1180 | 0 |
0.01 | 0 | 0.6169 | 0.9288 | 0.8621 | 0.6177 | 0.4905 | 0.6177 | 0.8621 | 0.9288 | 0.6169 | 0 |
0.02 | 0 | 0.3942 | 0.6480 | 0.7186 | 0.6800 | 0.6488 | 0.6800 | 0.7186 | 0.6480 | 0.3942 | 0 |
0.03 | 0 | 0.2887 | 0.5067 | 0.6253 | 0.6665 | 0.6733 | 0.6665 | 0.6253 | 0.5067 | 0.2887 | 0 |
0.04 | 0 | 0.2331 | 0.4258 | 0.5560 | 0.6251 | 0.6458 | 0.6251 | 0.5560 | 0.4258 | 0.2331 | 0 |
0.05 | 0 | 0.1995 | 0.3720 | 0.4996 | 0.5754 | 0.6002 | 0.5754 | 0.4996 | 0.3720 | 0.1995 | 0 |
0.06 | 0 | 0.1759 | 0.3315 | 0.4511 | 0.5253 | 0.5504 | 0.5253 | 0.4511 | 0.3315 | 0.1759 | 0 |
0.07 | 0 | 0.1574 | 0.2981 | 0.4082 | 0.4778 | 0.5015 | 0.4778 | 0.4082 | 0.2981 | 0.1574 | 0 |
0.08 | 0 | 0.1419 | 0.2693 | 0.3698 | 0.4338 | 0.4558 | 0.4338 | 0.3698 | 0.2697 | 0.1419 | 0 |
0.09 | 0 | 0.183 | 0.2437 | 0.3351 | 0.3936 | 0.4137 | 0.3936 | 0.3351 | 0.2437 | 0.1283 | 0 |
0.1 | 0 | 0.1161 | 0.2208 | 0.3038 | 0.3570 | 0.3753 | 0.3570 | 0.3038 | 0.2208 | 0.1161 | 0 |
Величины, полученные методом Кранка-Николсона, достаточно близки к