Введение
К дифференциальным уравнениям с частными производными приходим при решении самых разнообразных задач. Например, при помощи дифференциальных уравнений с частными производными можно решать задачи теплопроводности, диффузии, многих физических и химических процессов.
Как правило, найти точное решение этих уравнений не удается, поэтому наиболее широкое применение получили приближенные методы их решения. В данной работе ограничимся рассмотрением дифференциальных уравнений с частными производными второго порядка, а точнее дифференциальными уравнениями с частными производными второго порядка параболического типа, когда эти уравнения являются линейными, а искомая функция зависит от двух переменных
Для решения дифференциальных уравнений параболического типа существует несколько методов их численного решения на ЭВМ, однако особое положение занимает метод сеток, так как он обеспечивает наилучшие соотношения скорости, точности полученного решения и простоты реализации вычислительного алгоритма. Метод сеток еще называют методом конечных разностей.
1 Теоретическая часть
1.1 Постановка задач для уравнений параболического типа
Классическим примером уравнения параболического типа является уравнение теплопроводности (диффузии). В одномерном по пространству случае однородное (без источников энергии) уравнение теплопроводности имеет вид
(1)Если на границах
и заданы значения искомой функции в виде , , (2) , , (3)т.е. граничные условия первого рода, и , кроме того заданы начальные условия
, , (4)то задачу (1)-(4) называют первой начально-краевой задачей для уравнения теплопроводности (1).
В терминах теории теплообмена
— распределение температуры в пространственно-временной области a2 — коэффициент температуропроводности, а (2), (3) с помощью функций , задают температуру на границах и .Если на границах
и заданы значения производных искомой функции по пространственной переменной: , , (5) , , (6)т.е. граничные условия второго рода, то задачу (1), (5), (6), (4) называют второй начально-краевой задачей для уравнения теплопроводности (1). В терминах теории теплообмена на границах в этом случае заданы тепловые потоки.
Если на границах заданы линейные комбинации искомой функции и ее производной по пространственной переменной:
, , (7) , , (8)т.е. граничные условия третьего рода, то задачу (1), (7), (8), (4) называют третьей начально-краевой задачей для уравнения теплопроводности (1). В терминах теплообмена граничные условия (7), (8) задают теплообмен между газообразной или жидкой средой с известными температурами
на границе и на границе и границами расчетной области с неизвестными температурами , . Коэффициенты α, β – известные коэффициенты теплообмена между газообразной или жидкой средой и соответствующей границей.Для пространственных задач теплопроводности в области
первая начально-краевая задача имеет вид (9)Аналогично ставится вторая и третья начально-краевые задачи для пространственного уравнения (9). На практике часто ставятся начально-краевые задачи теплопроводности со смешанными краевыми условиями, когда на границах задаются граничные условия различных родов.
1.2 Основные определения и конечно-разностные схемы
Основные определения, связанные с методом конечных разностей, рассмотрим на примере конечно-разностного решения первой начально-краевой задачи для уравнения теплопроводности (1)-(4).
Согласно методу сеток в плоской области D строится сеточная область Dh, состоящая из одинаковых ячеек. При этом область Dh должна как можно лучше приближать область D. Сеточная область (то есть сетка) Dh состоит из изолированных точек, которые называются узлами сетки. Число узлов будет характеризоваться основными размерами сетки h: чем меньше h, тем больше узлов содержит сетка. Узел сетки называется внутренним, если он принадлежит области D, а все соседние узлы принадлежат сетке Dh. В противном случае он называется граничным. Совокупность граничных узлов образует границу сеточной области Гh.
Сетка может состоять из клеток разной конфигурации: квадратных, прямоугольных, треугольных и других. После построения сетки исходное дифференциальное уравнение заменяется разностным уравнением во всех внутренних узлах сетки. Затем на основании граничных условий устанавливаются значения искомого решения в граничных узлах. Присоединяя граничные условия сеточной задачи к разностным уравнениям, записанных для внутренних узлов, получаем систему уравнений, из которой определяем значения искомого решения во всех узлах сетки.
Нанесем на пространственно-временную область
, конечно разностную сетку ωh,τ: (10)с пространственным шагом h=l/N и шагом по времени τ=T/K.
Рисунок 1 – Конечно-разностная сетка
Введем два временных слоя: нижний
,на котором распределение искомой функции u(xj,tk), , известно (при к = 0 распределение определяется начальным условием (4)u(xj,tk)=ψ(xj)), и верхний временной слой tk+1=(k+1) τ, на котором распределение искомой функции u(xj,tk+1), .Сеточной функцией задачи (1)-(4) называют однозначное отображение целых аргументов j,k в значения функции
.На введенной сетке вводят сеточные функции
, первая из которых известна, вторая подлежит определению. Для определения в задаче (1)-(4) заменяют (аппроксимируют) дифференциальные операторы отношением конечных разностей (более подробно это рассматривают в разделах численных методов «Численное дифференцирование»), получают