ε =
Сравним полученные результаты, для этого проанализируем точность полученного решения. Результат мы можем оценить двумя способами
и , где E – матрица, полученная в результате подстановки найденного решения в систему линейных алгебраических уравнений: Е=A*x-b. Проиллюстрируем результаты графически. Для этого была разработана программа в среде Matlab 6.5.E2=input('Введите матрицу Е2=');
E3=input('Введите матрицу Е3=');
E4=input('Введите матрицу Е4=');
E5=input('Введите матрицу Е5=');
Q1=sqrt(sum(power(E2,2)));
Q2=sqrt(sum(power(E3,2)));
Q3=sqrt(sum(power(E4,2)));
Q4=sqrt(sum(power(E5,2)));
Q = [Q1 Q2 Q3 Q4];
abs(E2);
abs(E3);
abs(E4);
abs(E5);
a1=max(abs(E2));
a2=max(abs(E3));
a3=max(abs(E4));
a4=max(abs(E5));
A = [a1 a2 a3 a4];
E = [2 3 4 5];
plot (Q,E)
pause
plot (A,E)
На основе проведенного анализа и иллюстрации графиков можно сделать вывод, что с увеличением мерности матрицы увеличивается неточность решения.
- влияние обусловленности матрицы А;
Для исследования возьмем матрицу следующего вида, которую в последствии будем заполнять нулями, прослеживая результат изменения ошибки:
, ей соответственно зададимX =
-6.1000
-2.2000
-6.8000
-0.9000
0.2000
E =
-0.0389
-0.7994
0.2665
-0.0888
0.0888
, ей соответственно зададимX =
-0.7869
-1.3706
-2.1805
-0.0204
1.5371
E =
0
0
0.2665
0
0
, ей соответственно зададимX =
-0.4950
0.1575
5.0050
4.7700
-5.5025
E =
0
0
0
-0.7105
0.4441
X =
-4.1125
1.0263
-1.0750
1.2947
-1.2313
E =
-0.0444
0
0.0888
-0.0888
0.1776
, ей соответственно зададимX =
0.5000
1.0263
1.6667
1.2947
0.8250
E =
0
0
0.8882
-0.8882
0
Четкой тенденции проследить невозможно, хотя видно на основе предложенной матрицы А, что с увеличение числа нулей, присутствующих в матрице, точность решения увеличивается, т.к. уменьшается число элементов задействованных в вычислении, то и снижается ошибка вычислений.
- обусловленность матрицы А;
Зададим матрицу с практически равными элементами. В последствии будем увеличивать ее размерность.
, ей соответствуетX =
-1.6499
-1.6501
E =
0
-0.9313
, ей соответствуетX =
-1.6522
0.7500
2.3978
E =
0
0.1863
0
X =
0.0018
2.4041
2.3978
0.0033
E =
-0.0167
0.0371
-0.0371
-0.3558
Обусловленность матрицы снижает ошибку вычислений у матриц с более высокой размерностью, т.е. с увеличением размерности разряженной матрицы ее точность увеличивается (ошибка вычислений снижается).
Подводя итоги можно сделать следующий вывод. Точность решения зависит как от обусловленности, разреженности и мерности матрицы, так и в целом комбинация этих составляющих влияет на точность полученного решения. Хотя в некоторых случаях однозначного ответа дать невозможно, так как точность зависит еще и от того, насколько громоздки были вычисления, и как много требовалось округлений, а также все ли были учтены недочеты. А также если корни будут близки к целым корням, то и точность решения будет выше.
В данной контрольной работе был проанализирован один из методов решения систем линейных алгебраических уравнений: метод квадратных корней. Метод был предложен для решения системы Ax=b, где матрица A – симметрическая, хотя не исключено, что метод может использоваться и не для симметрических матриц, тогда исходную систему можно привести к виду AA¢x=bA¢, полученную систему легко можно решить методом квадратных корней.
Также в данной системе были проанализированы разного рода матрицы, и их влияние на точность полученного решения. Основываясь на полученных выводах, можно контролировать в каких конкретно моментах удобно решать систему линейных алгебраических уравнений методом квадратных, а когда лучше использовать другой метод.
1. Государственные стандарты. ИТ. комплекс стандартов и руководящих документов на АС. Издание официальное. Комплект стандартизации и метрологии СССР. М. – 1991.
2. Копченова Н.В., Марон И.А. Вычислительная математика в примерах и задачах. М.: «Наука», 1972.
3. Писсанецки С. Технология разряженных матриц. – М.: Мир, 1988.
4. Сарычева О.М. Численные методы в экономике: Конспект лекций. Новосибирск: НГТУ, 1995.
5. Численные методы. Методические указания. НГТУ, 2002.