Смекни!
smekni.com

Метод квадратных корней (стр. 2 из 2)

ε =

Сравним полученные результаты, для этого проанализируем точность полученного решения. Результат мы можем оценить двумя способами

и
, где E – матрица, полученная в результате подстановки найденного решения в систему линейных алгебраических уравнений: Е=A*x-b. Проиллюстрируем результаты графически. Для этого была разработана программа в среде Matlab 6.5.

E2=input('Введите матрицу Е2=');

E3=input('Введите матрицу Е3=');

E4=input('Введите матрицу Е4=');

E5=input('Введите матрицу Е5=');

Q1=sqrt(sum(power(E2,2)));

Q2=sqrt(sum(power(E3,2)));

Q3=sqrt(sum(power(E4,2)));

Q4=sqrt(sum(power(E5,2)));

Q = [Q1 Q2 Q3 Q4];

abs(E2);

abs(E3);

abs(E4);

abs(E5);

a1=max(abs(E2));

a2=max(abs(E3));

a3=max(abs(E4));

a4=max(abs(E5));

A = [a1 a2 a3 a4];

E = [2 3 4 5];

plot (Q,E)

pause

plot (A,E)



На основе проведенного анализа и иллюстрации графиков можно сделать вывод, что с увеличением мерности матрицы увеличивается неточность решения.

- влияние обусловленности матрицы А;

Для исследования возьмем матрицу следующего вида, которую в последствии будем заполнять нулями, прослеживая результат изменения ошибки:

, ей соответственно зададим

X =

-6.1000

-2.2000

-6.8000

-0.9000

0.2000

E =

-0.0389

-0.7994

0.2665

-0.0888

0.0888

, ей соответственно зададим

X =

-0.7869

-1.3706

-2.1805

-0.0204

1.5371

E =

0

0

0.2665

0

0

, ей соответственно зададим

X =

-0.4950

0.1575

5.0050

4.7700

-5.5025

E =

0

0

0

-0.7105

0.4441


, ей соответственно зададим

X =

-4.1125

1.0263

-1.0750

1.2947

-1.2313

E =

-0.0444

0

0.0888

-0.0888

0.1776

, ей соответственно зададим

X =

0.5000

1.0263

1.6667

1.2947

0.8250

E =

0

0

0.8882

-0.8882

0

Четкой тенденции проследить невозможно, хотя видно на основе предложенной матрицы А, что с увеличение числа нулей, присутствующих в матрице, точность решения увеличивается, т.к. уменьшается число элементов задействованных в вычислении, то и снижается ошибка вычислений.

- обусловленность матрицы А;

Зададим матрицу с практически равными элементами. В последствии будем увеличивать ее размерность.

, ей соответствует

X =

-1.6499

-1.6501

E =

0

-0.9313

, ей соответствует

X =

-1.6522

0.7500

2.3978

E =

0

0.1863

0


, ей соответствует

X =

0.0018

2.4041

2.3978

0.0033

E =

-0.0167

0.0371

-0.0371

-0.3558

Обусловленность матрицы снижает ошибку вычислений у матриц с более высокой размерностью, т.е. с увеличением размерности разряженной матрицы ее точность увеличивается (ошибка вычислений снижается).

Анализ результатов

Подводя итоги можно сделать следующий вывод. Точность решения зависит как от обусловленности, разреженности и мерности матрицы, так и в целом комбинация этих составляющих влияет на точность полученного решения. Хотя в некоторых случаях однозначного ответа дать невозможно, так как точность зависит еще и от того, насколько громоздки были вычисления, и как много требовалось округлений, а также все ли были учтены недочеты. А также если корни будут близки к целым корням, то и точность решения будет выше.


Заключение

В данной контрольной работе был проанализирован один из методов решения систем линейных алгебраических уравнений: метод квадратных корней. Метод был предложен для решения системы Ax=b, где матрица A – симметрическая, хотя не исключено, что метод может использоваться и не для симметрических матриц, тогда исходную систему можно привести к виду AA¢x=bA¢, полученную систему легко можно решить методом квадратных корней.

Также в данной системе были проанализированы разного рода матрицы, и их влияние на точность полученного решения. Основываясь на полученных выводах, можно контролировать в каких конкретно моментах удобно решать систему линейных алгебраических уравнений методом квадратных, а когда лучше использовать другой метод.


Литература

1. Государственные стандарты. ИТ. комплекс стандартов и руководящих документов на АС. Издание официальное. Комплект стандартизации и метрологии СССР. М. – 1991.

2. Копченова Н.В., Марон И.А. Вычислительная математика в примерах и задачах. М.: «Наука», 1972.

3. Писсанецки С. Технология разряженных матриц. – М.: Мир, 1988.

4. Сарычева О.М. Численные методы в экономике: Конспект лекций. Новосибирск: НГТУ, 1995.

5. Численные методы. Методические указания. НГТУ, 2002.