До проведения опыта выборка Х1, Х2, Х3, …, Хnесть совокупность независимых случайных величин, которые имеют математическое ожидание и дисперсию, а значит распределение вероятности такие же как и сама случайная величина Х. Таким образом:
Исходя из этого, найдем математическое ожидание и дисперсию случайной величины
Таким образом математическое ожидание статистического среднего
Это значит, что при большом объеме выборки Nстатистическое средние
Точность статистической оценки. Доверительная вероятность (надежность оценки), доверительный интервал
Точечные оценки неизвестных значений математического ожидания и дисперсии имеют большое значение на первоначальном этапе обработки статических данных. Их недостаток в том, что неизвестно с кокой точностью они дают оцениваемый параметр.
Пусть по данной выборке Х1, Х2, Х3, …, Хnполучены точные статистические оценки
Таким образом, α- это доверительная вероятность или надежность оценки, значение α выбираются заранее в зависимости от решаемой задачи. Надежность α принято выбирать 0.9; 0.95; 0.99; 0.999. События с такой вероятностью являются практически достоверными. По заданной доверительной вероятности можно найти число ε>0 из
Тогда получим интервал
Доверительный интервал для математического ожидания нормального распределения случайной величины при известном σ.
Пусть дана выборка Х1, Х2, Х3, …, Хn, и пусть по этой выборке найдено
Требуется найти доверительный интервал
Случайная величина
Где
Из формулы (3) и таблиц функции Лапласа находим число ε>0 и записываем доверительный интервал для точного значения
В этой курсовой работе значение σ заменим
Найдем доверительный интервал
по таблицам Лапласа находим:
Отсюда ε = 0,5986.
Понятия о критериях согласия
Во многих случаях закон распределения случайной величины неизвестен, но на основании опытных данных делается предположение о виде закона распределения случайной величины Х. Однако для окончательного решения вопроса о виде распределения следует проверить согласуются ли результаты наблюдения с высказанным предположением. При этом, если даже предположение о виде распределения сделано правильно, закон распределения наблюдаемой случайной величины будет отличаться от теоретического закона, т.к. число наблюдений ограничено.
Поэтому следует выяснить: является ли расхождение между статистическим и теоретическим законами распределения только следствием ограниченного числа наблюдений, или оно является чем-то более существенным.
Для решения этой задачи служит критерий согласия. Существует несколько видов критерия согласия: критерий согласия Пирсона, Колмогорова, Смирного, Фишера и т.д.
Для проверки гипотезы о законе распределения случайной величины применим критерий согласия Пирсона или c2.
1. Найдем число
Где
n– объем выборки (n= 100),
где