Введение
1. Теорема о неподвижной точке
2.1 Неподвижная точка и отношения эквивалентности
2.2 Системный трюк: ещё одно доказательство
2.3 Несколько замечаний
3. Практическая часть
Заключение
Список литературы
Рекурсивные функции (от позднелатинского recursio - возвращение), название, закрепившееся за одним из наиболее распространённых вариантов уточнения общего понятия арифметического алгоритма, т.е. такого алгоритма, допустимые исходные данные которого представляют собой системы натуральных чисел, а возможные результаты применения являются натуральными числами. Рекурсивные функции были введены в 30-х гг. 20 в. С.К. Клини, в свою очередь основывавшимся на исследованиях К. Гёделя, Ж. Эрбрана и др. математиков.
Теорема (Клини) о неподвижной точке является основным инструментом исследования в теории рекурсивных функций. Это глубокий результат в том смысле, что он даёт изящный и экономичный метод обращения с конструкциями, что в ином случае потребовало бы долгих и сложных рассуждений.
Эта теорема может быть приведена в нескольких формах и может рассматриваться с нескольких точек зрения. В определённом смысле теорема суммирует некоторый класс диагональных методов, включая метод, используемый для построения рекурсивно-перечислимых, но не рекурсивных множеств. С другой стороны, эта теорема устанавливает некоторый результат о неподвижной точке и, подобно теоремам о неподвижной точке из математического анализа, может быть использована для доказательства существования многих неявно заданных функций.
1. ТЕОРЕМА О НЕПОДВИЖНОЙ ТОЧКЕ
Теорема 1. Пусть U — главная вычислимая универсальная функция для класса вычислимых функций одного аргумента, a h — произвольная всюду определённая вычислимая функция одного аргумента. Тогда существует такое число n, что Un = Uh(n), то есть n и h(n) — номера одной функции.
Другими словами, нельзя найти алгоритма, преобразующего программы, который бы по каждой программе давал другую (не эквивалентную ей). Эту теорему называют теоремой Клини о неподвижной точке или теоремой о рекурсии.
Рассмотрим произвольное отношение эквивалентности (которое мы будем обозначать x
у) на множестве натуральных чисел. Мы покажем, что следующие два свойства этого отношения не могут выполняться одновременно:Для всякой вычислимой функции f существует всюду определённая вычислимая функция g, являющаяся её
-продолжением (это означает, что если f(x) определено при некотором x, то g(х) f(x)).Существует всюду определённая вычислимая функция h, не имеющая
-неподвижной точки.Если x
у — отношение равенства (x = у), то второе свойство выполнено (положим, например, h(n) = n + 1), поэтому не выполнено первое. Теорема о неподвижной точке получится, если x = у понимать как Ux = Uy (x и y — номера одной и той же функции). В этом случае выполнено первое свойство, как мы сейчас убедимся, и потому не выполнено второе.Почему выполнено первое свойство? Пусть f — произвольная вычислимая функция одного аргумента. Рассмотрим функцию V(n, x) = U(f(n), x). Поскольку U является главной универсальной функцией, найдётся всюду определённая функция s, для которой V(n, x) = U(s(n),x) при всех n и х. Эта функция и будет искомым
-продолжением. В самом деле, если f(n) определено, то s(n) будет другим номером той же функции, что и f(n). (Отметим, что если f(n) не определено, то s(n) будет одним из номеров нигде не определённой функции.)Для завершения доказательства теоремы о неподвижной точке осталось проверить, что указанные два свойства отношения эквивалентности несовместны. Возьмём вычислимую функцию f, от которой никакая вычислимая функция не может отличаться всюду (например, диагональную функцию х → U(x, х) для некоторой вычислимой универсальной функции U). По предположению существует всюду определённое вычислимое
-продолжение g функции f. Рассмотрим функцию t(x) = h(g(x)), где h — вычислимая всюду определённая функция, не имеющая -неподвижной точки. Тогда t будет всюду отличаться от f. В самом деле, если f(x) определено, то f(x) g(х) h(g(x)) = t(x), и потому f(x) t(x). Если же f(x) не определено, то этот факт сам по себе уже отличает f(x) и t(x).Теорему о неподвижной точке можно переформулировать и так:
Теорема 2. Пусть U(n, x) — главная вычислимая универсальная функция для класса вычислимых функций одного аргумента. Пусть V(n, x) — произвольная вычислимая функция. Тогда функции U и V совпадают на некотором сечении: найдётся такое р, что Up = Vp, то есть U(p, n) = V(p, n) для любого n.
Так как функция U является главной, найдём такую всюду определённую вычислимую функцию h, что V(n,x) = U(h(n),x) при всех n и x. Осталось взять в качестве р неподвижную точку функции h.
(Пример следствия из этой теоремы: как бы ни старались разработчики, для любых двух версий компилятора существует программа, которая одинаково работает в обеих версиях — например, зацикливается и там, и там. Впрочем, это всё же не наверняка, а только если компилятор задаёт главную универсальную функцию — но надо очень постараться, чтобы это было не так!)
Поучительно развернуть цепочку приведённых рассуждений и проследить, как строится неподвижная точка. Для наглядности вместо U(n,x) мы будем писать [n](x) и читать это «результат применения программы n к входу x»;
Рассуждение начинается с рассмотрения «диагональной» функции U(x,x), которую теперь можно записать как [x](x) (результат применения программы x к себе). Далее мы строим её всюду определённое
-продолжение. Это делается так. Выражение [[x] (x)] (у) вычислимо зависит от двух аргументов. Мы вспоминаем, что U есть главная универсальная функция, и находим такую программу g, что [[g](x)](y) = [[x] (x)] (у) при всех x и у. При этом [g](x) определено для всех x. Пусть мы хотим найти неподвижную точку программы h. Мы рассматриваем композицию [h]([g](x)). Это выражение вычислимо зависит от x, и потому существует программа t, для которой [t](x) = [h](g(x)) при всех x. Эта программа применима ко всем x, поскольку таковы h и g. Теперь неподвижной точкой будет [g](t). Чтобы убедиться в этом, мы должны проверить, что [[g](t)](x) = [h ([g](t))] (x) для всех x. В самом деле, по свойству g имеем [[g](t)](x) = [[t](t)](x). Вспоминая определение t, это выражение можно переписать как [[h] ([g](t))] (x) — что как раз и требовалось.Если попросить любителей разных языков программирования написать на своём любимом языке по возможности короткую программу, которая бы печатала свой исходный текст, то чемпионом, скорее всего, окажется короткая программа на бейсике:
10 LIST
Дело в том, что в бейсике есть команда LIST, которая печатает текст программы и может быть запущена изнутри программы.
Прежде всего, это хорошая шутка. Но можно отнестись к ней неожиданно серьёзно и использовать эту идею в ещё одном доказательстве теоремы о неподвижной точке (точнее, в ещё одном варианте того же доказательства).
Прежде всего заметим, что теорему достаточно доказать для какой-то одной главной нумерации. В самом деле, пусть для какой-то другой главной нумерации существует функция без неподвижной точки, то есть имеется способ преобразовывать программы в заведомо неэквивалентные. Тогда с помощью трансляции туда и обратно такой способ
можно найти и для первой нумерации (для которой мы теорему считаем доказанной).
Теперь рассмотрим язык программирования, в котором помимо обычных возможностей есть встроенная процедура
GetProgramText (var s: string)
Эта процедура помещает текст исходной программы в строку s. Несмотря на некоторую необычность этой идеи, вполне можно представить себе интерпретатор этого языка — и интерпретация этой процедуры не представляет труда, так как интерпретатору, разумеется, доступен текст программы. Сделаем ещё один шаг и представим себе, что в этом языке есть также процедура
ExecuteProgram(s: string)
Эта процедура передаёт управление программе, текст которой находится в строке s, считая входом этой программы вход исходной программы (как сказал бы настоящий программист, «передавая программе s дескриптор входного потока»). И в этом случае понятно, как должен действовать интерпретатор языка: он должен рекурсивно вызвать себя на содержимом строки s и входных данных.
Наш обогащенный язык программирования, разумеется, допускает трансляцию с него в обычные языки (поскольку имеет интерпретатор) и наоборот (так как можно не пользоваться новыми конструкциями). Поэтому задаваемая им нумерация вычислимых функций является главной. Пусть h — всюду определённая вычислимая функция, у которой мы хотим найти неподвижную точку. Запишем вычисляющий её алгоритм в виде процедуры нашего языка:
function Compute_h (x: string) : string; begin
end;
(При этом нам даже не нужны новые возможности.) Теперь напишем программу, являющуюся неподвижной точкой функции А:
program fixed_point; var s: string;
function Compute_h (x:string) : string; begin
end; begin
GetProgramText (s);
s := Compute_h (s);
ExecuteProgram (s); end.
Выполнение этой программы сразу же сводится к выполнению программы, получающейся применением к ней функции А, так что она будет неподвижной точкой по построению.