Смекни!
smekni.com

Теория вероятностей (стр. 3 из 3)

Формирование правых частей нормальной системы


Где

случайная величина, сгенерированная по нормальному закону с учётом коэффициентов регрессии.

Информационная матрица

Решение относительно коэффициентов регрессии.

Для нахождения вида уравнения регрессии необходимо вычислить коэффициенты регрессии

данного уравнения.

Уравнение регрессии :

Графики уравнения регрессии и результатов измерений, по которым определялись коэффициенты регрессии:

- - - - уравнение регрессии

____ случайная выборка из нормального закона

10. Построение доверительных интервалов для коэффициентов регрессии, остаточной дисперсии и ошибок прогноза

Доверительные интервалы будем находить для каждого элемента вектора оценок коэффициентов регрессии

.

В случае нормальных ошибок доверительные интервалы находятся из двойного неравенства:


где

- остаточная сумма квадратов;
- диагональный элемент ковариационной матрицы вида

так как слагаемых в уравнении регрессии шесть.

(1)

(2)

(3)

Строим интервал для коэф-та регрессии:


Доверительный интервал

, где из таблицы находим.

k = 6;

Тогда для r = [1…6] будем

брать соответствующий элемент ковариационной матрицы, и находить доверительный интервал с учётом (1) (2) (3).

Нахождение доверительного интервала для

(фактор
):

-

Нахождение доверительного интервала для

(фактор
):

Нахождение доверительного интервала для

(фактор
):

Нахождение доверительного интервала для

(фактор
):

Нахождение доверительного интервала для

(фактор
):

Нахождение доверительного интервала для

(фактор
):

Доверительные интервалы для

,
,
не накрывают значение равное нулю, следовательно, факторы
,
,
являются значимыми, а факторы
,
,
- незначимыми.

11. Оценка значимости факторов по доверительным интервалам

Исключив из уравнения регрессии незначимые факторы, приходим к следующему виду:

Таким образом, из графика видно, что при исключении из уравнения регрессии незначимых факторов график не изменился. Найдем доверительный интервал для остаточной дисперсии

при
.

А доверительный интервал найдём из следующего двойного неравенства:

Таким образом, доверительный интервал для остаточной дисперсии есть:


Выводы

Таким образом, в данной курсовой работе были изучены методы обработки случайных выборок с нормальным законом распределения. Так же найдены оценки коэффициентов регрессии и построены доверительные интервалы. В последнем пункте работы были оценены значимости факторов по доверительным интервалам.