Смекни!
smekni.com

Теория вероятностей (стр. 1 из 3)

Министерство высшего образования Российской Федерации

Ижевский Государственный Университет

Кафедра ВТ

Курсовая работа

Вариант Ж - 5

Выполнил: студент гр. 462

Проверил: Веркиенко Ю. В.

2006 г.


Содержание

Цель работы

Задание

1. Генерирование выборок

2. Поиск оценок для выборок

3. Построение доверительных интервалов математического ожидания и дисперсии

4. Построение доверительного интервала для коэффициента корреляции

5. Построение эмпирической интегральной функции распределения и теоретической (для нормального закона с оценками среднего и дисперсии)

6. Построение эмпирической кривой плотности распределения и теоретической

7. Проверка гипотезы о величине среднего (), дисперсии (2), о нормальном законе распределения (по 2 и по Колмогорову)

8. Проверка гипотезы о независимости выборок и об одинаковой дисперсии в выборках

9. Составление системы условных уравнений и поиск по МНК оценки коэффициентов регрессии

10. Построение доверительных интервалов для коэффициентов регрессии, остаточной дисперсии и ошибок прогноза

11. Оценка значимости факторов по доверительным интервалам

Выводы


Цель работы

Выполнить все одиннадцать пунктов работы по заданию и сделать выводы.

Задание

На ЭВМ по программе случайных нормальных чисел с законом N(m,s2) генерировать две выборки объема n

x1,¼,xn (1)

y1,¼,yn (2)

Для выборок (1), (2) найти оценки

Ex, Sx,
wx, wy.

Для (1) построить доверительные интервалы для математического ожидания (считая s2 известной и неизвестной) и дисперсии.

Для (1), (2) построить доверительный интервал для коэффициента корреляции.

Для (1) построить эмпирическую интегральную функцию распределения

и теоретическую (для нормального закона с оценками среднего и дисперсии)

Для (1) построить эмпирическую кривую плотности распределения, разбив интервал (x(1), x(n)) на 5-6 интервалов. На этом же графике изобразить теоретическую кривую.

Проверить гипотезы: о величине среднего (m), дисперсии (s2), о нормальном законе распределения (по c2 и по Колмогорову).

Проверить гипотезу о независимости выборок (1), (2), об одинаковой дисперсии в выборках.

Для уравнения (модели)

с заданными коэффициентами bi составить систему условных уравнений, считая
и найти по МНК оценки коэффициентов регрессии. Значения брать из равномерного закона
или с равномерным шагом на отрезке [–1, 1].

Построить доверительные интервалы для коэффициентов регрессии, остаточной дисперсии и ошибок прогноза в точках x=-1, 0, 1.

По доверительным интервалам

оценить значимость факторов xi=xi. Фактор считается незначимым, если доверительный интервал накрывает значение, равное нулю.

При выполнении курсовой работы использовать значения: среднее выборок Х и У равно 3, дисперсия выборок равна 1. Уровень значимости a = 0.05. С.к.о. ошибки измерений в задаче регрессии 0.2.


1. Генерирование выборок

На ЭВМ по программе случайных нормальных чисел с законом N(m,s2) генерируем две выборки объема n = 17, где m = 3 и s2 = 1

x1,¼,xn (1)

y1,¼,yn (2)

Вариационные ряды:

(1)
(2)

2. Поиск оценок для выборок

Для найденных выборок (1), (2) находим оценки

Ex, Sx,
wx, wy.

Выборочное среднее:


Квадрат средне – квадратичного отклонения:

Оценка центрального момента 3-го порядка:

Оценка центрального момента 4-го порядка:

Коэффициент эксцесса:

Коэффициент асимметрии:

Оценка корреляционного момента:

Оценка коэффициента корреляции:

Размах выборки:

3. Построение доверительных интервалов математического ожидания и дисперсии

Для (1) строим доверительные интервалы для математического ожидания (считая s2 известной и неизвестной) и дисперсии.

Считаем s2 известной.


Считаем s2 неизвестной.

Таким образом, при различных вариантах μmin, μmax имеют почти одинаковые значения.

Подставляем табличные значения 24,7 и 5,01 в знаменатели подкоренного выражения и получаем, что

,

,

4. Построение доверительного интервала для коэффициента корреляции

Для (1), (2) строим доверительный интервал для коэффициента корреляции.

U = 1,96

Так как

, то пусть
, отсюда z = 0,693

То есть |z| ≤ 0,693.

Если z = –0,693 и z = 0,693, то получим доверительный интервал для коэффициента корреляции –0,6 < Rxy < 0,6.

5. Построение эмпирической интегральной функции распределения и теоретической (для нормального закона с оценками среднего и дисперсии)

Создание ступенчатой функции, при скачке высотой 1/n.

Построение эмпирических Fx(u), Fy(u) и теоретических интегральных функций распределения. В последних средние и с. к. о. Взяты равными вычисленным оценкам математического ожидания и с. к. о.

Пусть u = 0, 0.001…6, тогда

,