Смекни!
smekni.com

Основные этапы становления и структура современной математики (стр. 2 из 5)

В XVII веке запросы естествознания и техники привели к созданию методов, позволяющих математически изучать движение, процессы изменения величин, преобразование геометрических фигур. С употребления переменных величин в аналитической геометрии и создание дифференциального и интегрального исчисления начинается период математики переменных величин. Великим открытиям XVII века является введенное Ньютоном и Лейбницем понятие бесконечно малой величины, создание основ анализа бесконечно малых величин (математического анализа).

На первый план выдвигается понятие функции. Функция становится основным предметом изучения. Изучение функции приводит к основным понятиям математического анализа: пределу, производной, дифференциалу, интегралу.

К этому времени относятся и появление гениальной идеи Р.Декарта о методе координат. Создается аналитическая геометрия, которая позволяет изучать геометрические объекты методами алгебры и анализа. С другой стороны метод координат открыл возможность геометрической интерпретации алгебраических и аналитических фактов.

Дальнейшее развитие математики привело в начале ХIX века к постановке задачи изучения возможных типов количественных отношений и пространственных форм с достаточно общей точки зрения.

Связь математики и естествознания приобретает все более сложные формы. Возникают новые теории и возникают они не только в результате запросов естествознания и техники, но и в результате внутренней потребности математики. Замечательным примером такой теории является воображаемая геометрия Н.И.Лобачевского. Развитие математики в XIX и XX веках позволяет отнести ее к периоду современной математики. Развитие самой математики, математизация различных областей науки, проникновение математических методов во многие сферы практической деятельности, прогресс вычислительной техники привели к появлению новых математических дисциплин, например, исследование операций, теория игр, математическая экономика и другие.

Основными методами в математических исследованиях являются математические доказательства - строгие логические рассуждения. Математическое мышление не сводится лишь к логическим рассуждениям. Для правильной постановки задачи, для оценки выбора способа ее решения необходима математическая интуиция.

В математике изучаются математические модели объектов. Одна и та же математическая модель может описывать свойства далеких друг от друга реальных явлений. Так, одно и тоже дифференциальное уравнение может описывать процессы роста населения и распад радиоактивного вещества. Для математика важна не природа рассматриваемых объектов, а существующие между ними отношения.

В математике используют два вида умозаключений: дедукция и индукция.

Индукция – метод исследования, в котором общий вывод строится на основе частных посылок.

Дедукция – способ рассуждения, посредством которого от общих посылок следует заключение частного характера.

Математика играет важную роль в естественнонаучных, инженерно-технических и гуманитарных исследованиях. Причина проникновения математики в различные отрасли знаний заключается в том, что она предлагает весьма четкие модели для изучения окружающей действительности в отличие от менее общих и более расплывчатых моделей, предлагаемых другими науками. Без современной математики с ее развитыми логическим и вычислительным аппаратами был бы невозможен прогресс в различных областях человеческой деятельности.

Математика является не только мощным средством решения прикладных задач и универсальным языком науки, но также и элементом общей культуры.


Основные черты математического мышления

По данному вопросу особый интерес представляет характеристика математического мышления, данная А.Я.Хинчиным, а точнее, его конкретно-исторической формы - стиля математического мышления. Раскрывая сущность стиля математического мышления, он выделяет четыре общие для всех эпох черты, заметно отличающие этот стиль от стилей мышления в других науках.

Во-первых, для математика характерна доведенное до предела доминирование логической схемы рассуждения. Математик, потерявший, хотя бы временно, из виду эту схему, вообще лишается возможности научно мыслить. Эта своеобразная черта стиля математического мышления имеет в себе много ценного. Очевидно, что она в максимальной степени позволяет следить за правильностью течения мысли и гарантирует от ошибок; с другой стороны, она заставляет мыслящего при анализе иметь перед глазами всю совокупность имеющихся возможностей и обязывает его учесть каждую из них, не пропуская ни одной (такого рода пропуски вполне возможны и фактически часто наблюдаются при других стилях мышления).

Во-вторых, лаконизм, т.е. сознательное стремление всегда находить кратчайший ведущий к данной цели логический путь, беспощадное отбрасывание всего, что абсолютно необходимо для безупречной полноценности аргументации. Математическое сочинение хорошего стиля, не терпит никакой “воды”, никаких украшающих, ослабляющих логическое напряжение разглагольствований, отвлечений в сторону; предельная скупость, суровая строгость мысли и ее изложения составляют неотъемлемую черту математического мышления. Черта эта имеет большую ценность не только для математического, но и для любого другого серьезного рассуждения. Лаконизм, стремление не допускать ничего излишнего, помогает и самому мыслящему, и его читателю или слушателю полностью сосредоточиться на данном ходе мыслей, не отвлекаясь побочными представлениями и не теряя непосредственного контакта с основной линией рассуждения.

Корифеи науки, как правило, мыслят и выражаются лаконично во всех областях знаний, даже тогда, когда мысль их создает и излагает принципиально новые идеи. Какое величественное впечатление производит, например, благородная скупость мысли и речи величайших творцов физики: Ньютона, Эйнштейна, Нильса Бора! Может быть, трудно найти более яркий пример того, какое глубокое воздействие может иметь на развитие науки именно стиль мышления ее творцов.

Для математики лаконизм мысли является непререкаемым, канонизированным веками законом. Всякая попытка обременить изложение не обязательно нужными (пусть даже приятными и увлекательными для слушателей) картинами, отвлечениями, разглагольствованиями заранее ставится под законное подозрение и автоматически вызывает критическую настороженность.

В-третьих, четкая расчлененность хода рассуждений. Если, например, при доказательстве какого-либо предложения мы должны рассмотреть четыре возможных случая, из которых каждый может разбиваться на то или другое число подслучаев, то в каждый момент рассуждения математик должен отчетливо помнить, в каком случае и подслучае его мысль сейчас обретается и какие случаи и подслучаи ему еще остается рассмотреть. При всякого рода разветвленных перечислениях математик должен в каждый момент отдавать себе отчет в том, для какого родового понятия он перечисляет составляющие его видовые понятия. В обыденном, не научном мышлении мы весьма часто наблюдаем в таких случаях смешения и перескоки, приводящие к путанице и ошибкам в рассуждении. Часто бывает, что человек начал перечислять виды одного какого-нибудь рода, а потом незаметно для слушателей (а часто и для самого себя), пользуясь недостаточной логической отчетливостью рассуждения, перескочил в другой род и заканчивает заявлением, что теперь оба рода расклассифицированы; а слушатели или читатели не знают, где пролегает граница между видами первого и второго рода.

Для того чтобы сделать такие смешения и перескоки невозможными, математики издавна широко пользуются простыми внешними приемами нумерации понятий и суждений, иногда (но гораздо реже) применяемыми и в других науках. Те возможные случаи или те родовые понятия, которые надлежит рассмотреть в данном рассуждении, заранее перенумеровываются; внутри каждого такого случая те, подлежащие рассмотрению подслучаи, которые он содержит, также перенумеровываются (иногда, для различения, с помощью какой-либо другой системы нумерации). Перед каждым абзацем, где начинается рассмотрение нового подслучая, ставится принятое для этого подслучая обозначение (например: II 3 - это означает, что здесь начинается рассмотрение третьего подслучая второго случая, или описание третьего вида второго рода, если речь идет о классификации). И читатель знает, что до тех пор, покуда он не натолкнется на новую числовую рубрику, всё излагаемое относится только к этому случаю и подслучаю. Само собою, разумеется, что такая нумерация служит лишь внешним приемом, очень полезным, но отнюдь не обязательным, и что суть дела не в ней, а в той отчетливой расчлененности аргументации или классификации, которую она и стимулирует, и знаменует собою.

В-четвертых, скрупулезная точность символики, формул, уравнений. То есть “каждый математический символ имеет строго определенное значение: замена его другим символом или перестановка на другое место, как правило, влечет за собою искажение, а подчас и полное уничтожение смысла данного высказывания”.

Выделив основные черты математического стиля мышления, А.Я.Хинчин замечает, что математика (особенно математика переменных величин) по своей природе имеет диалектический характер, а следовательно, способствует развитию диалектического мышления. Действительно, в процессе математического мышления происходит взаимодействие наглядного (конкретного) и понятийного (абстрактного). “Мы не можем мыслить линии, – писал Кант, – не проведя её мысленно, не можем мыслить себе три измерения, не проведя, из одной точки трех перпендикулярных друг к другу линий”.