Отношение площадей двух соответственных треугольников постоянно и равно к.
Доказательство теоремы распадается на следующие случаи:
1.Треугольники имеют общую сторону на оси хх.
Такие треугольники представлены на чертеже 8. Отношение их площадей выразится следующим образом:
2. Треугольники имеют общую вершину на оси хх.
Таковы два треугольника на чертеже 9. Соответственные стороны ВС и В'С' этих треугольников должны пересекаться на оси хх (в точке X). Рассматриваемый случай сводится к предыдущему. В самом деле, на основании предыдущего можно написать:
Но
Поэтому будем иметь:
3.Общий случай двух соответственных треугольников.
Пусть на чертеже 10 имеем два соответственных треугольника ABC и А'В'С'. Рассмотрим один из этих треугольников, напримерABC. Площадь этого треугольника можно представить следующим образом:
Все треугольники правой части этого равенства относятся к рассмотренным уже двум случаям, поэтому, применяя к ним доказанную теорему, можем переписать найденное выше равенство так:
,илиСледовательно,
7. Выведенное нами свойство площадей двух соответственных треугольников легко распространить на случай соответственных многоугольников. В самом деле, каждый многоугольник может быть разбит на несколько треугольников, причем площадь многоугольника выразится суммой площадей составляющих его треугольников.
Для соответственного многоугольника получим аналогичное разбиение на треугольники. Если площади двух соответственных многоугольников обозначим буквами S и S', а площади двух соответственных составляющих треугольников — буквами
, то можем написать:Так как, кроме того, для площадей соответственных треугольников имеем:
, тоТаким образом, получаем:
Наконец, можно обобщить теорему об отношении площадей на случай двух площадей, ограниченных соответственными кривыми произвольного вида.
Обозначим площади, ограниченные двумя соответственными кривыми, через
и . Впишем многоугольник в кривую, ограничивающую площадь , и обозначим площадь этого многоугольника буквой S. Будем увеличивать число сторон вписанного многоугольника до бесконечности при условии, что каждая сторона его стремится к нулю, тогда получим:Для площади
будем иметь аналогичный процесс: ,где через S' обозначена площадь многоугольника, соответственного многоугольнику S. Так как в течение всего процесса (изменения многоугольников), согласно доказанной выше теореме, должны иметь:
S = kS',
то переход к пределу дает
=k .Следовательно,
Полученное свойство может быть представлено как инвариант перспективно-аффинного соответствия.
В самом деле, обозначим через
и площади, ограниченные двумя кривыми произвольного вида, а через ' и ' - площади, ограниченные соответственными кривыми, тогда, по доказанному, будем иметь:или, переставляя средние члены пропорции:
что может быть выражено следующими словами: отношение двух каких-либо площадей не изменяется (является инвариантом) в перспективно-аффинном соответствии.
Общее аффинное соответствие
Перспективно-аффинное соответствие двух плоскостей может быть получено с помощью параллельной проекции.
Рассмотрим теперь соответствие двух плоскостей, образованное многократным применением параллельного проектирования. Так, на чертеже 11 плоскость w проектируется параллельно прямой l на плоскость w'. Эта плоскость проектируется параллельно прямой l' на плоскость w". Наконец, последняя проектируется параллельно прямой l" на плоскость w'". Таким образом, между плоскостями w и w"'устанавливается соответствие, в котором точкам A,B,C первой плоскости соответствуют точки А'", В'", С" второй. Нетрудно убедиться в том, что это соответствие может не быть параллельной проекцией, но в то же время обладает инвариантными свойствами перспективно-аффинного соответствия. В самом деле, соответствие плоскостей w и w"' является цепью последовательных параллельных проектирований. Так как каждое такое проектирование сохраняет коллинеарность и простое отношение трех точек, то теми же свойствами должно, очевидно, обладать и результирующее соответствие плоскостей wи w'''.
То же самое можно сказать и об остальных инвариантных свойствах, рассмотренных в случае перспективно-аффинного соответствия, которое оказывается, таким образом, лишь тем частным случаем, когда прямые, соединяющие соответственные точки, параллельны между собой:
По этой именно причине такое соответствие называется перспективно- аффинным.
Соответствие же плоскостей w и w''' называется аффинным. Мы пришли к этому понятию, воспользовавшись цепью перспективно-аффинных преобразований (или параллельных проекций). Если каждое из них обозначим буквами Р, Р',Р" а результирующее преобразование — буквой А, можем представить аффинное преобразование А следующей символической формулой:
А = Р • Р' • Р",
в которой правая часть представляет собой «произведение» перспективно-аффинных преобразований, т. е. результат их последовательного применения.
Те же рассуждения можно было бы провести, не выходя из одной плоскости, для чего достаточно рассматривать цепь перспективно-аффинных преобразований плоскости в себя. Каждое из преобразований может быть задано осью и парой соответственных точек. Так, например, на чертеже 12 первое преобразование Р задано осью хх и парой (А, А'); второе Р' — осью и парой (А', А"); третье Р" — осью х"х" и парой (А'' А'"). В результирующем преобразовании А точке А соответствует точка А'". На том же чертеже показано построение точки В"', соответственной точке В.
Изложенное показывает, что преобразования, полученные при помощи цепи параллельных проекций (или перспективно-аффинных преобразований), обладают свойствами коллинеарности и сохранения простого отношения трех точек.
2.4 Применение аффинных преобразований при решении задач
Если в задаче затрагиваются только такие свойства фигур, которые сохраняются при произвольном аффинном преобразовании, то задача называется аффинной. Если же в задаче речь идет о свойствах, сохраняющихся при преобразованиях подобия, но нарушающихся при каком- либо аффинном преобразовании, то задача называется метрической. Например, задача «доказать, что медианы треугольника пересекаются в одной точке»- аффинная, а такие же задачи для высот и биссектрис- метрические.
Для решения аффинных задач рекомендуются следующие приемы:
1. Какую- либо из фигур аффинным преобразованием перевести в более простую, например, треугольник - в правильный треугольник, параллелограмм- в квадрат и т.д.
2. Применить аффинные координаты.
Эти идеи иллюстрируются первыми двумя из следующих задач.
1)Докажите, что прямая, соединяющая точку Р пересечения диагоналей трапеции АВСD с точкой пересечения Q боковых сторон, проходит через середины оснований трапеции.
Способ решения 1. Возьмем произвольный равнобедренный треугольник А'О'D'(рис.10) и рассмотрим аффинное преобразование α:
. Обозначим точки пересечения прямой РQ с основаниями через х и у. Обозначим α(В)=В', α(С)=С', α(Р)=Р' и т.д. Очевидно, что точка Р' есть точка пересечения А'С' и В'D', точка х'- точка пересечения А'D' и Р'Q', точка у'- точка пересечения В'С' и Р'Q'. Так как . То достаточно показать, что .