Анатолий Копик
Электромагнитные волны, с помощью которых радиосигнал передается в космическом пространстве, движутся с гигантской скоростью — скоростью света. На Земле задержки в передаче почти не ощущаются, а вот с космонавтами на орбите приходится говорить уже с задержкой. Ответ с Луны будет идти полторы секунды, с Марса — уже минут шесть. Кроме того, по мере удаления передатчика сигнал стремительно затухает. Как же быть? Проблема тяжелая, но решаемая.
Сегодня самый удаленный космический объект, с которым поддерживается радиоконтакт, — это американская автоматическая межпланетная станция «Вояджер-1», запущенная 5 сентября 1977 года. В августе прошлого года она преодолела рубеж 100 астрономических единиц (15 миллиардов километров) и вплотную подошла к границе Солнечной системы. Радиосигнал с такого расстояния идет около 14 часов.
«Вояджер-1» — самая далекая космическая станция, с которой поддерживается связь
Информация с «Вояджера» на Землю передает жестко скрепленная с корпусом параболическая антенна диаметром 3, 65 метра, которая должна быть сориентирована точно на родную планету. Через нее на частотах 2295 МГц и 8418 МГц шлют сигналы два радиопередатчика мощностью по 23 ватта. Для надежности каждый из них дублирован. Большая часть данных транслируется на Землю со скоростью 160 бит/с — это всего раза в три-четыре быстрее, чем скорость набора текста профессиональной машинисткой и в 300 раз медленнее телефонного модема. Для приема сигнала на Земле используется 34-метровые антенны сети дальней космической связи NASA, но в некоторых случаях задействуются самые большие 70-метровые антенны, и тогда скорость удается поднять до 600 и даже 1400 бит/с. По мере удаления станции ее сигнал слабеет, но еще важнее то, что постепенно снижается мощность радиоизотопных генераторов, которые питают передатчики. Ожидается, что станция сможет передавать научные данные еще по крайней мере 10 лет, после чего связь с ней прекратится.
Уже из этого описания видно, что космическая радиосвязь зависит от множества различных факторов: дальности, мощности передатчика, размеров бортовой и наземной антенн, длины волны, качества приемопередающей электроники, помех, шумов, поглощения сигнала в окружающей среде и даже от скорости движения космического аппарата.
Радиомалыши
Связь с космическими аппаратами поддерживают не только профессионалы, но и любители. Первый американский радиолюбительский спутник OSCAR-1 был запущен уже в 1961 году, а в 1969-м в США появилась и общественная спутниковая радиолюбительская организация AMSAT (AMateur SATellite). В СССР первые радиолюбительские аппараты «Радио-1» и «Радио-2» были запущены 26 октября 1977 года. Заядлыми радиолюбителями являются многие космонавты и астронавты. Космонавт Муса Манаров, например, первым вышел на связь в любительском диапазоне с борта орбитальной станции «Мир». На Международной космической станции тоже есть коротковолновая радиостанция, и в часы отдыха экипаж иногда выходит на связь с радиолюбителями разных стран.
А около 10 лет назад из спутникового радиолюбительства возникло новое бурно развивающееся направление — «студенческие» спутники. Как оказалось, участие студенческих групп в создании космических аппаратов — очень эффективный способ подготовки квалифицированных кадров для космической и других высокотехнологичных отраслей промышленности.
Тонна – киловатт – кубометр
Принцип действия радиосвязи состоит в том, что колебания тока в антенне передатчика создают в окружающем пространстве электромагнитные волны, которые, двигаясь со скоростью света, достигают антенны приемника и возбуждают в ней переменный электрический ток. Этот наведенный ток очень слаб, но если настроить приемник точно в резонанс с частотой радиоволны, то даже слабое ее воздействие может раскачать в антенне вполне заметные колебания. Затем их усиливают, анализируют и извлекают переданную информацию.
Радиоволны различных диапазонов по-разному проходят через земную атмосферу. Для космической связи оптимален диапазон от 1, 5 до 30 сантиметров. За пределами этого окна радиосигнал заметно ослабляется в атмосфере или даже может от нее отразиться. На более коротких волнах потери энергии растут за счет поглощения молекулами воды и кислорода в тропосфере, а на более длинных волнах прохождению сигнала все сильнее мешает ионосфера, которая для волн длиннее 10—30 метров становится непреодолимой преградой. Поглощение радиоволн также вызывается дождем и туманом, но, конечно, не в такой мере, как в оптическом диапазоне.
Приемник не улавливает радиоволны, если они слабее его порога чувствительности. Между тем энергия электромагнитных волн падает как квадрат пройденного ими расстояния. Это значит, что сигнал с Марса будет в сотни тысяч раз слабее, чем такой же сигнал, переданный с Луны, а с Плутона — еще в тысячу раз слабее. У инженеров есть несколько способов удержать радиосигнал выше порога чувствительности приемника. Самый очевидный — увеличить мощность передатчика. На Земле это легко сделать — антенны системы дальней космической связи NASA излучают в космос до полумегаватта энергии. А вот на космическом аппарате бюджет энергии жестко ограничен. Ее вырабатывают либо солнечные батареи, либо радиоизотопные генераторы. И для получения большей мощности надо увеличивать их массу. При этом растут также площадь и масса радиаторов, отводящих избыток вырабатываемого тепла. Общая масса аппарата ограничена возможностями ракеты-носителя, а увеличить же массу отдельной системы за счет других чаще всего невозможно. Космические аппараты — это очень гармоничные технические комплексы, где все параметры жестко завязаны друг на друга: нельзя серьезно изменить одну систему, не повлияв на параметры других. Сегодня для спутников существует эмпирическая формула: «1 кг, 1 Вт, 1 литр», которая означает, что объем спутника массой в 1 тонну составит около 1 кубометра, а его система энергопитания способна достичь мощности 1 киловатт. К примеру, мощность передатчиков радиолюбительских спутников составляет всего несколько ватт, а современные телекоммуникационные аппараты на геостационарной орбите могут иметь передатчики мощностью несколько киловатт, что позволяет принимать их сигнал небольшими «тарелками» спутникового телевидения.
Если увеличить размер приемной антенны, то можно собрать больше энергии электромагнитной волны и поймать сигнал более слабого передатчика. В космосе размеры антенн обычно не превышают габаритов обтекателя ракеты-носителя, то есть нескольких метров. Хотя в последнее время инженеры научились обходить это ограничение — антенны все чаще делают разворачиваемыми. Например, аппараты «Турая» (Thuraya), поддерживающие мобильную спутниковую связь, оснащены 12-метровой антенной, которая разворачивается как зонтик из первоначальной компактной укладки. На Земле для дальней космической связи используются параболические антенны диаметром до 70 метров. Это уже близко к пределу — современные конструкционные материалы не позволяют создавать на поверхности Земли намного более крупные подвижные антенны, поскольку они деформируются под собственной тяжестью. В будущем их местом станет околоземная орбита. В невесомости гигантская космическая антенна может быть постепенно собрана из очень легких ажурных элементов.
Простейшие сигналы «простейшего спутника»
Ровно 50 лет назад, 4 октября 1957 года, из космоса впервые был принят радиосигнал искусственного происхождения. Радиомаяк первого спутника транслировал с орбиты в эфир простые короткие сигналы «бип-бип». Передача шла на двух частотах — 20 и 40 МГц (длина волны — 15 и 7, 5 метра), доступных для приема радиолюбителями на Земле. Для них это был знак выдающегося события — выхода человечества в космос. Специалисты же вдобавок получали важную телеметрическую информацию — периодичность сигналов сообщала о температуре в приборном отсеке, а по прохождению радиоволн через ионосферу определялись физические условия в околоземном пространстве. Первый искусственный спутник поднялся над Землей менее чем на тысячу километров, а химической батареи, питавшей его передатчик, хватило на 22 дня. Спустя полвека, космические аппараты работают в сотни раз дольше и улетают в миллионы раз дальше, чем «простейший спутник» ПС-1. Но даже самые совершенные из них никогда уже не будут первыми.
Критическое звено
Размер антенны важен и еще по одной причине: чем он больше, тем меньше расходится в пространстве пучок радиоволн. Обычная дипольная антенна, как у походной рации, излучает почти одинаково во все стороны, и большая часть энергии теряется зря. Трехметровая параболическая антенна позволяет зажать пучок радиоволн сантиметрового диапазона в пределах угла порядка одного градуса, что дает выигрыш в мощности в десятки тысяч раз. Но при этом возникает необходимость точно нацеливать антенну на Землю. Если откажет система ориентации, связь с аппаратом прервется. Именно так погибла советская межпланетная станция «Фобос-1». В 1989 году на подлете к Марсу она получила неверную команду с Земли, в результате чего произошел сбой в работе бортового компьютера, аппарат потерял ориентацию, солнечные батареи отвернулись от Солнца, а параболическая антенна — от Земли. Операторы безуспешно пытались наладить контакт со станцией.
Таким образом, связь — это критическое звено во всех межпланетных миссиях. Отказ других систем часто удается обойти, пусть иногда и ценой потери части научных данных. Но если рвется связь с Землей, то даже исправный в остальных отношениях аппарат фактически перестает для нас существовать. Поэтому коммуникационная система должна быть исключительно надежна и на всех современных космических аппаратах она как минимум продублирована. При сбоях, которые в большинстве случаев приводят к потере ориентации аппарата или его переводу в режим закрутки, низкоскоростная система связи через всенаправленную антенну передаст на Землю параметры состояния бортовых систем и обеспечит прием команд управления. Когда работоспособность аппарата будет восстановлена, связь пойдет через быстрый канал передачи информации.