Смекни!
smekni.com

Схема Бернулли. Цепи Маркова (стр. 1 из 11)

Введение

Цепь Маркова — последовательность случайных событий с конечным или счётным бесконечным числом исходов, характеризующаяся тем свойством, что при фиксированном настоящем будущее независимо от прошлого.

Цепи Маркова – одна из основных и актуальных тем в нынешнее время в современной математике. Цепи Маркова являются обобщением схемы Бернулли, которая была написана в XVII, а Марковские цепи получили сравнительно недавно свое признание. Очень много процессов в нынешнее время решаются с помощью схем Бернулли или цепей Маркова. Вся поисковая система Интернета основана на этих процессах.

Эта была одна из основных причин выбора мною этой темы для выпускной квалификационной работы (ВКР). Мне было очень интересно, по какому принципу происходит выборка по рассылке, или по поиску в Интернете. Рассылка спам-ботов основана тоже на этих же процессах.

Цель моей работы – Ознакомиться и как можно подробнее рассмотреть заинтересовавший меня материал. Особенно интересной для меня была эта тема по той причине, что она не рассматривалась в курсе моего обучения в институте, а является частью пройденного материала по теории вероятности.

Свою работу «Приложение схемы Бернулли. Обобщение. Цепи Маркова» я начинаю с введения понятий касающихся раздела схемы Бернулли. Из этого и состоят моя первая глава ВКР - Биография Якоба Бернулли и схема Бернулли. Я рассматриваю различные варианты схем Бернулли, как она по-разному применятся, различные формы записи, обобщения.

Во второй главе своей работы я уже по выше рассмотренным понятиям схем Бернулли ввожу понятие Цепь Маркова, которая была так названа в честь нашего соотечественника, великого математика, Андрея Андреевича Маркова. Для лучшего понятия темы Цепи Маркова в этой главе я рассматриваю введение понятия цепь Маркова с помощью примера.

Третья глава дает нам представление о том, какой объем работы может выполнять человек, который владеет цепями Маркова. Подробно рассматриваю на примере по определению авторства текста. Я посчитал этот пример очень удачным применением Цепей Маркова.

Глава 1. Схема Бернулли

1.1 Исторический курс. Биография Якоба Бернулли

Якоб Бернулли родился 27 декабря 1654 г. По желанию отца готовился к званию протестантского священника. Окончил Базельский университет, где изучал философию, богословие и языки. Владел немецким, французским, английским, итальянским, латинским и греческим языками. Испытывая непреодолимое влечение к математике, изучал ее тайком от отца. В 1671 г. получил степень магистра философии. С большим успехом читал проповеди на немецком и французском языках. В то же время продолжал пополнять свои знания по математике без учителя, почти без учебников.

В октябре 1686 г. оказывается вакантной должность профессора математики в Базельском университете. Успехи Якоба в математике хорошо известны, и Сенат университета единодушно выдвинул на вакантную должность Якоба Бернулли. Вступление в должность состоялось 15 февраля 1687 г. Вряд ли присутствовавшие при этом скромном акте представляли, что они являются свидетелями начала беспримерного в истории математики события: отныне кафедру будут занимать Бернулли на протяжении ста лет. Члены же этой семьи будут профессорами родного университета в течение четверти тысячелетия, вплоть до второй половины XX в.

В том же году Якоб Бернулли прочитал в «Асtа Eruditirum» за 1684 г. «Новый метод» Лейбница и, обнаружив трудные места, письменно обратился к Лейбницу за разъяснением. Лейбниц, находившийся в длительной служебной поездке, получил письмо только через три года, когда надобность в консультации отпала: Якоб совместно Иоганном овладели дифференциальным и интегральным исчислениями настолько, что вскоре смогли приступить систематическому развитию метода. Образовавшийся триумвират — Лейбниц, Якоб и Иоганн Бернулли — менее чем за двадцать лет чрезвычайно обогатил анализ бесконечно малых.

С 1677 г. Я. Бернулли стал вести записные книжки, куда вносил различного рода заметки научного содержания. Первые записи посвящены теологии, сделаны под влиянием распространенного в то время в Базеле сборника спорных теологических вопросов.

Основное место в записных книжках занимает решение задач. Уже по ранним записям можно судить о проявленном Я. Бернулли интересе к прикладной математике. Математические заметки показывают, как постепенно Я. Бернулли овладевал методами Валлиса, Декарта, инфинитезимальными методами, как развивал и совершенствовал их. Решенные им задачи служили отправными пунктами для дальнейших более глубоких исследований.

В январе 1684 г. Я. Бернулли провел в Базельском университете открытый диспут, на котором защищал 100 тезисов, из них 34 логических, 18 диалектических и 48 смешанных. Некоторые тезисы крайне любопытны. Вот примеры:

78. Иногда существует несколько кратчайших путей из точки в точку

83. Среди изопериметрических фигур одна может быть в бесконечное число раз больше другой

85. Не в каждом треугольнике сумма внутренних углов равна двум прямым

89. Квадратура круга еще не найдена, но не потому, что между искривленным и прямолинейным нет никакой связи; в действительности кривую можно спрямить, а криволинейную фигуру квадрировать

В мае 1690 г. Я. Бернулли опубликовал в «Асtа Eruditirum» первую работу, связанную с исчислением бесконечно малых. В ней он дал решение поставленной Лейбницем в 1687 г. задачи о парацентрической изохроне. Необходимо было найти кривую, по которой материальная точка опускалась бы в равные промежутки времени на равные высоты. Я. Бернулли вывел дифференциальное уравнение кривой и проинтегрировал его. При этом он впервые употребил в печати термин «интеграл», указав, что из равенства двух выражений, связывающих дифференциалы, следует равенство интегралов.

В лекциях, читанных Лопиталю, И. Бернулли ход решения излагает так. Пусть искомой кривой будет АDС. Материальная точка за время ∆t перемещается из точки D в точку d и из точки С в точку с. По условию задачи проекции дуг Dd Сс на вертикаль одинаковы. Проведем через D и С касательные к кривой до пересечения с продолжением АF. Отрезки касательных будут DK и CL. Напишем тождество

Вв.Сс=Вв.Рс • Рс.Ссю

Дуги Dd и Сс малы, поэтому фигуры GDd и НСс можно считать треугольниками.

Из подобия треугольников GDd и DEK, НСс и СFL получим

Вв.ВП=ВЛ.ВУбСс.Нс=СД.САю

С помощью этих пропорций найдем

Вв.Сс=ВП1Нс • ВК.ВЕ • СА.СДю

По условиям задачи dG/Нс=1, поэтому

Вв1Сс=ВК.ВЕ • СА.СДю

Проведем через точку С прямую СМ, параллельную DК. Тогда

DК/DЕ=СМ/СF, Dd/Сс=СМ/СL.


Но отношение Dd/Сс равно отношению скоростей (интервал ∆t один и тот же), квадраты же скоростей, по найденному Галилеем закону, относятся как пройденные высоты; это дает

Dd2/Сс2=СМ2/СL2=DЕ/CF, СМ2/СL2 =DЕ/СF.

Последнее равенство означает, что если через две произвольные точки кривой провести касательные СL и DК и через точку С провести СМ параллельно DК, то должна выполняться указанная пропорция. Таким свойством обладает искомая кривая.

Задача оказалась сведенной к классу обратных задач на касательные: найти кривую, касательные к которой удовлетворяют некоторому требованию. Подобную задачу впервые предложил Декарту Дебон, и Декарт с ней не справился. Разработанный Лейбницем метод позволяет решать и обратные задачи на касательные.

Выберем начало координат в точке А. Обозначим АЕ=х, ЕD=у. Тогда GD=dх, Gd=dу. Обозначим также СF=а, СL=b. Треугольники FСМ и СdD подобны, отсюда

Gd/Dd=FС/СМ.

Но Dd = √dx2+dy2, поэтому

dy/√ dx2+dy2= а/СМ, откуда

CM2= (a2dx2+a2dy2)/dy2.

Подставим найденное выражение в пропорцию СL2/СM2=СF/СЕ и получим дифференциальное уравнение

и2вн2.(ф2вч22вн2)=ф.нб и2нвн23вн23вч2б (и2н-а3)ву2 = а3вч2б

√b2y-a3 dy=√a3 dx.


В уравнении переменные разделены, интегрирование его дает искомую кривую

2b2у — 2а3/3b2 √b2у - а3 == х√а3.

Парацентрическая изохрона оказалась полукубической параболой. Вид кривой раньше Я. Бернулли определили Лейбниц и Гюйгенс, но лишь Я. Бернулли дал решение средствами анализа бесконечно малых.

В приложении к другой работе о рядах (1694 г.) Я. Бернулли сформулировал несколько тезисов.

1. Существуют спирали, которые совершают бесконечное число витков вокруг полюса, но имеют конечную длину.

2. Существуют кривые, которые, подобно эллипсу, замкнуты и, подобно параболе, уходят в бесконечность, например ay22(b+х).

3. Существуют кривые, состоящие из двух ветвей, например ау2=х(а2—х2),

4. Существуют неограниченные поверхности с конечной площадью.

5. Существуют неограниченные поверхности с бесконечной площадью, но такие, что соответствующие им тела вращения обладают конечным объемом.

Я. Бернулли увлекался также и изопериметрическими задачами. Древнейшая из них—задача легендарной основательницы Карфагена и его первой царицы Дидоны. Легенда такова. Дидона бежала от отца, тирского царя, и достигла Африки, где купила у туземцев участок земли на берегу моря «не больше, чем можно окружить воловьей шкурой». Она разрезала шкуру на узкие полоски и связала из них длинную ленту. Спрашивается, какой формы должна быть фигура, оцепленная лентой данной длины, чтобы площадь фигуры была наибольшей?

Ван-дер-Варден пишет, что Зенодор, живший вскоре после Архимеда, высказал 14 предложений относительно изопериметрических фигур. Он утверждал, что из всех фигур (кругов и многоугольников), имеющих одинаковый периметр, круг будет наибольшим, а также и то, что из всех пространственных тел с одинаковой поверхностью наибольшим будет шар.

Решение задачи содержится в записных книжках Я. Бернулли и помещено в майском номере «Acta Eruditorum» за 1701 г. Я. Бернулли и здесь применил высказанный ранее принцип: поскольку площадь должна быть экстремальной, этим же свойством должна обладать и любая ее элементарная часть. Он получил дифференциальное уравнение третьего порядка и впоследствии проинтегрировал его.