АППРОКСИМАЦИЯ ФУНКЦИИ МЕТОДОМ НАИМЕНЬШИХ
КВАДРАТОВ
Содержание
1. Цель работы
2. Методические указания
2.1 Методические рекомендации по аппроксимации методом наименьших квадратов
2.2 Постановка задачи
2.3 Методика выбора аппроксимирующей функции
2.4 Общая методика решения
2.5 Методика решения нормальных уравнений
2.6 Рекомендации по выбору формы записи систем линейных алгебраических уравнений
2.7 Методика вычисления обратной матрицы
3. Ручной счет
3.1 Исходные данные
3.2 Система нормальных уравнений
3.3 Решение систем методом обратной матрицы
4. Схема алгоритмов
5. Текст программы
6. Результаты машинного расчета
Вывод
1. Цель работы
Настоящая курсовая работа является завершающим разделом дисциплины «Вычислительная математика и программирование» и требует от студента в процессе ее выполнения решения следующих задач:
а) практического освоения типовых вычислительных методов прикладной информатики; б) совершенствования навыков разработки алгоритмов и построения программ на языке высокого уровня.
Практическое выполнение курсовой работы предполагает решение типовых инженерных задач обработки данных с использованием методов матричной алгебры, решения систем линейных алгебраических уравнений численного интегрирования. Навыки, приобретаемые в процессе выполнения курсовой работы, являются основой для использования вычислительных методов прикладной математики и техники программирования в процессе изучения всех последующих дисциплин при выполнении курсовых и дипломных проектов.
2. Методические указания
2.1 Методические рекомендации по аппроксимации методом наименьших квадратов
2.2 Постановка задачи
При изучении зависимостей между величинами важной задачей является приближенное представление (аппроксимация ) этих зависимостей с помощью известных функций или их комбинаций, подобранных надлежащим образом. Подход к такой задаче и конкретный метод её решения определяются выбором используемого критерия качества приближения и формой представления исходных данных.
2.3 Методика выбора аппроксимирующей функции
Аппроксимирующую функцию
(1)
Определение аппроксимирующей функции φ разделяется на два основных этапа:
Подбор подходящего вида функции
Нахождение ее параметров в соответствии с критерием МНК.
Подбор вида функции
Более подробные сведения о поведении функций, которые могут быть использованы в задачах аппроксимации, можно найти в справочной литературе. В большинстве заданий курсовой работы вид аппроксимирующей функции
2.4 Общая методика решения
После того как выбран вид аппроксимирующей функции
Для решения задачи подставим выражение (1) в соответствующее из выражений и проведем необходимые операции суммирования или интегрирования (в зависимости от вида I). В результате величина I, именуемая в дальнейшем критерием аппроксимации, представляется функцией искомых параметров
(2)
Последующее сводиться к отысканию минимума этой функции переменных Сk; определение значений Сk=Ck*, к=1,m, соответствующих этому элементу I, и является целью решаемой задачи.
Типы функций Таблица 1
Вид функции | Название функции |
Y=C1+C2·x | Линейная |
Y=C1+C2·x+C3·x2 | Квадратичная (параболическая) |
Y= | Рациональная(полином n-й степени) |
Y=C1+C2· | Обратно пропорциональная |
Y=C1+C2· | Степенная дробно-рациональная |
Y= | Дробно-рациональная(первой степени) |
Y=C1+C2·XC3 | Степенная |
Y=C1+C2·aC3·x | Показательная |
Y=C1+C2·logax | Логарифмическая |
Y=C1+C2·Xn (0<n<1) | Иррациональная, алгебраическая |
Y=C1·sinx+C2cosx | Тригонометрические функции (и обратные к ним) |
Возможны следующие два подхода к решению этой задачи: использование известных условий минимума функции нескольких переменных или непосредственное отыскание точки минимума функции каким – либо из численных методов.
Для реализации первого из указанных подходов воспользуемся необходимым условием минимума функции (1) нескольких переменных, в соответствии с которыми в точке минимума должны быть равны нулю частные производные этой функции по всем ее аргументам
Полученные m равенств следует рассматривать как систему уравнений относительно искомых С1, С2,…, Сm. При произвольном виде функциональной зависимости (1) уравнения (3) оказывается нелинейным относительно величин Ckи их решение требует применение приближенных численных методов.
Использование равенства (3) дают, лишь необходимые, но недостаточные условия минимума (2). Поэтому требуется уточнить, обеспечивают ли найденные значения Ck* именно минимум функции
При представлении аппроксимирующей функции
2.5 Методика решения нормальных уравнений
Один из возможных способов минимизации критерия аппроксимации (2) предполагает решение системы нормальных уравнений (3). При выборе в качестве аппроксимирующей функции линейной функции искомых параметров нормальные уравнения представляют собой систему линейных алгебраических уравнений.
2.6 Рекомендации по выбору формы записи систем линейных алгебраических уравнений
Систему n линейных уравнений общего вида:
(4)
(4) можно записать посредством матричных обозначений в следующем виде: А·Х=В,
;
квадратная матрица А называется матрицей системы, а вектора Х и В соответственно вектором-столбцом неизвестных систем и вектором-столбцом ее свободных членов.
В матричном виде исходную систему n линейных уравнений можно записать и так:
(6)
Решение системы линейных уравнений сводиться к отысканию значений элементов вектора-столбца (хi), называемых корнями системы. Чтобы эта система имела единственное решение, входящее в нее n уравнение должно быть линейно независимым. Необходимым и достаточным условием этого является неравенство нулю определителя системы, т.е. Δ=detA≠0.