Критерий, характеризующий гидродинамический режим движения жидкости называется критерием Рейнольдса и является мерой отношения сил инерции и внутреннего трения в потоке:
,где ω – средняя скорость потока, м/с; d – диаметр трубопровода, м; ρ – плотность жидкости кг/м3; μ – динамический коэффициент вязкости, Па∙с; ν – кинематический коэффициент вязкости, м2/с.
Для потоков, проходящих по прямым трубам, характерны следующие значения критерия Рейнольдса:
Ламинарное течение Rе˂2300
Переходная область 2300˂Rе˂10000
Развитое турбулентное течение Rе˃10000
Для потоков некруглого поперечного сечения в выражение для вычисления критерия Рейнольдса подставляется эквивалентный диаметр, равный четырем гидравлическим радиусам. Гидравлический радиус rг представляет собой отношение площади поперечного сечения потока f к омываемому потоком (смоченному) периметру П:
Для трубы круглого сечения, сплошь заполненной жидкостью:
Следовательно, для потоков некруглого сечения вместо диаметра можно применять эквивалентный диаметр:
5. Написать уравнение расхода и неразрывности потока (материальный баланс потока) в интегральной (не дифференциальной) форме
Объемный расход жидкости или газа:
,где V – объемный расход жидкости или газа, м3/с; f – площадь поперечного сечения потока, м2; ω – средняя скорость потока, м/с;
Массовый расход жидкости или газа:
,где М – массовый расход жидкости или газа, кг/с; ρ – плотность жидкости или газа, кг/м3
при установившемся движении жидкости по закрытому трубопроводу и отсутствии утечки через неплотные соединения через каждое поперечное сечение трубопровода в единицу времени протекает одно и то же весовое количество жидкости. Это явление характеризуется уравнением неразрывности или сплошности потока:
G1=G2=G3=соnst
или
f1ω1γ1= f2ω2γ2= f3ω3γ3=соnst
для несжимаемых (капельных) жидкостей, удельный вес которых остается неизменным по длине трубопровода, уравнение неразрывности принимает следующий вид:
f1ω1= f2ω2= f3ω3=соnst
При неустановившемся движении изменение массы жидкости, заключенной в данном объеме и проходящей через каждое поперечное сечение трубопровода, происходит только за счет изменения ее плотности в этом объеме.
6. Написать уравнение Бернулли (энергетический баланс потока) для идеальной и реальной жидкостей. Объяснить, что обозначают составляющие этого уравнения. Назвать случаи практического использования уравнения Бернулли
Для любого сечения трубопровода, при установившемся движении идеальной жидкости, сумма скоростного и статического напоров и нивелирной высоты есть величина постоянная
Величина
называется гидродинамическим напором. Он складывается из следующих величин:
z – нивелирной высоты, называемой также геометрическим напором и представляющей собой высоту (м) данной частицы жидкости относительно произвольно выбранной горизонтальной плоскости сравнения;
- статического или пьезометрического напора, равного давлению столба жидкости над рассматриваемым уровнем. Статический напор имеет размерность длины (м);
- скоростного или динамического напора, кторый также иммет размерность длины (м)
Все члены уравнения Бернулли имеют одну размерность и наглядно изображаются графически (рис.1)
Рис. 1. Диаграмма Бернулли для идеальной жидкости при установившемся движении
Уравнение Бернулли выражает частный случай закона сохранения энергии. Любой напор в трубопроводе можно рассматривать как энергию жидкости, отнесенную либо к 1 кгс, либо к 1 м3 жидкости. В энергетической форме уравнение Бернулли для жидкости, перемещающейся без трения, может быть сформулировано следующим образом: для любого сечения трубопровода при установившемся движении невязкой жидкости сумма потенциальной
и кинетической энергии жидкости, движущейся по трубопроводу, остается величиной постоянной.При изменении сечения трубопровода и соответственно скорости движения жидкости происходит превращение энергии: при сужении трубопровода часть потенциальной энергии может перейти в кинетическую и наоборот, при расширении трубопровода часть кинетической энергии может перейти в потенциальную причем количество энергии остается неизменным.
При движении реальных жидкостей возникают силы трения, обусловленные вязкостью жидкости, характером ее движения, трением о стенки трубы и пр. на преодоление возникающего сопротивления должна расходоваться некоторая часть энергии, и общее количество энергии по длине трубопровода будет непрерывно уменьшаться за счет перехода потенциальной энергии в энергию, затрачиваемую на трение (энергию потерянную). В этом случае сумма членов уравнения Бернулли будет величиной постоянной только при учете потери энергии:
,где hп – потеря энергии или потеря напора в м.
для любого сечения трубопровода, в котором протекает реальная жидкость, при установившемся движении. Сумма напоров скоростного hск., статического hст. нивелирного z и потерянного hп есть величина постоянная.
В случае протекания жидкости по горизонтальному трубопроводу, при установившемся движении, нивелирные высоты для всех сечений трубопровода будут одни и те же, следовательно величина z из уравнения Бернулли может быть в этом случае исключена, и уравнение примет следующий вид:
Для любого сечения горизонтального трубопровода, при установившемся движении жидкости, общий напор равен сумме скоростного, статического и потерянного напоров.
Применяется уравнение Бернулли для расчета движения жидкости по наклонному трубопроводу, для расчета истечение жидкости через отверстие в дне или стенке сосуда при постоянном уровне жидкости в сосуде, при переменном уровне жидкости в сосуде, для расчета истечения жидкости через водослив.
7. Сущность физического (с использованием теории подобия) и математического моделирования
Наиболее перспективный метод решения задач исследования и расчета химико-технологических процессов – теоретический метод, основанный на составлении и решении дифференциальных уравнений, полностью описывающих процесс. Для практического использования этих уравнений следует при их решении учитывать ограничения, вытекающие из свойств конкретного явления (процесса). Однако многие химико-технологические процессы настолько сложны, что удается лишь составить систему дифференциальных уравнений для их описания и установить условия однозначности. Решить эти уравнения известными в математике методами не представляется возможным. В подобных случаях используют метод моделирования. Под моделированием понимают метод исследования химико-технологических процессов на моделях, отличающихся от объектов моделирования (натуры) в основном масштабом. Моделирование можно осуществлять двумя основными методами – методом обобщенных переменных или методом теории подобия (физическое моделирование), и методом численного эксперимента (математическое моделирование). Принципиального различия между этими методами нет, поскольку оба они в большей или меньшей степени основаны на экспериментальных данных и различаются лишь подходом к их обработке и анализу.
Одним из основных принципов теории подобия является выделение из класса явлений (процессов), описываемых общим законом группы подобных явлений. Подобными называют такие явления, для которых отношения сходственных и характеризующих их величин постоянны. Различают следующие виды подобия: геометрическое, временное, физических величин, начальных и граничных условий.
Геометрическое подобие предполагает, что сходственные размеры натуры и модели параллельны, а их отношение выражается постоянной величиной, называемой константой геометрического подобия или масштабным (переходным) множителем.
Временное подобие предполагает, что сходственные точкиили части геометрически подобных систем (натуры и модели), двигаясь по геометрически подобным траекториям, проходят геометрически подобные пути в промежутки времени, отношение которых является постоянной величиной.