или
Докажем, что
Подставляя правые части этих равенств в соотношение (*), получим
или окончательно
Дисперсия и среднее квадратическое отклонение
На практике часто требуется оценить рассеяние возможных значений случайной величины вокруг ее среднего значения. Например, в артиллерии важно знать, насколько кучно лягут снаряды вблизи цели, которая должна быть поражена.
На первый взгляд может показаться, что для оценки рассеяния проще всего вычислить все возможные значения отклонения случайной величины и затем найти их среднее значение. Однако такой путь ничего не даст, так как среднее значение отклонения, т.е.
Дисперсией (рассеянием) дискретной случайной величины называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:
Пусть случайная величина задана законом распределения
Тогда квадрат отклонения имеет следующий закон распределения:
По определению дисперсии,
Таким образом, для того чтобы найти дисперсию, достаточно вычислить сумму произведений возможных значений квадрата отклонения на их вероятности.
Формула для вычисления дисперсии
Для вычисления дисперсии часто бывает удобно пользоваться следующей теоремой.
Теорема. Дисперсия равна разности между математическим ожиданием квадрата случайной величины
Доказательство. Математическое ожидание
Итак,
Свойства дисперсии
Свойство 1. Дисперсия постоянной величины
Доказательство. По определению дисперсии,
Пользуясь первым свойством математического ожидания, получим
Итак,
Свойство становится ясным, если учесть, что постоянная величина сохраняет одно и то же значение и рассеяния, конечно, не имеет.
Свойство 2. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:
Доказательство. По определению дисперсии имеем
Пользуясь вторым свойством математического ожидания (постоянный множитель можно выносить за знак математического ожидания), получим
Итак,
Свойство становится ясным, если принять во внимание, что при
Свойство 3. Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин:
Доказательство. По формуле для вычисления дисперсии имеем
Раскрыв скобки и пользуясь свойствами математического ожидания суммы нескольких величин и произведения двух независимых случайных величин, получим
Итак,
Следствие 1. Дисперсия суммы нескольких взаимно независимых случайных величин равна сумме дисперсий этих величин.
Следствие 2. Дисперсия суммы постоянной величины и случайной равна дисперсии случайной величины:
Свойство 4. дисперсия разности двух независимых случайных величин равна сумме их дисперсий:
Доказательство. В силу третьего свойства
По второму свойству,
или
Среднее квадратическое отклонение
Для оценки рассеяния возможных значений случайной величины вокруг ее среднего значения кроме дисперсии служат и некоторые другие характеристики. К их числу относится среднее квадратическое отклонение.