Смекни!
smekni.com

Арифметичні застосування теорії конгруенцій (стр. 1 из 6)

Курсова робота

АРИФМЕТИЧНІ ЗАСТОСУВАННЯ ТЕОРІЇ КОНГРУЕНЦІЙ

Зміст

Вступ

1. Конгруенції та їх основні властивості

2. Ознаки подільності

3. Перевірка арифметичних дій

4. Визначення члена цифр періоду при перетворенні звичайного дробу в десятковий

5. Індекси. Загальні властивості

Висновки


Вступ

Важливе місце в курсі теорії чисел посідають конгруенції та, зокрема, застосування конгруенцій. Цим питанням займалися такі видатні вчені як, Ейлер, Ферма, Б. Паскаль.

П'єр Ферма (1601-1665) - відомий свого часу юрист і радник судового парламенту в Тулузі - інтенсивно і з великим успіхом займався різними математичними питаннями. П. Ферма є одним з творців диференціального числення і теорії ймовірності, але особливо велике значення мають його роботи по теорії чисел. Більшість теоретико-числових результатів П. Ферма записувалися ним на полях екземпляра твору Діофанта „Арифметика”; Ферма зазвичай не записував доведення, а давав тільки короткі вказівки про метод, який він застосовував для отримання свого результату. Твір Ферма під назвою „Opera Varia" були видані вперше в 1679 р.

Теорема Ферма, викладена в цій главі, була висловлена в одному з листів, посланому їм в 1640 р. Френіклу. У цьому листі Ферма пише, що він отримав доведення цієї теореми; проте саме доведення не було ним опубліковане.

Перше з відомих доведень теореми Ферма належить Лейбніцу (1646-1716). Доведення Лейбніца було засноване на розгляді порівняння:

.

Ейлер дав декілька різних доведень теореми Ферма, з яких перше відноситься до 1736 р. У 1760 р. Ейлер узагальнив теорему, надавши їй вигляду теореми 120, що носить його ім'я. Треба при цьому мати на увазі, що термінологія і позначення у Ферма і у Ейлера абсолютно відмінні від сучасних.

Блез Паскаль (1623-1662) - видатний французький математик, фізик і філософ. Математичні інтереси Паскаля дуже різноманітні: він зробив істотний внесок у розвиток аналізу нескінченно малих; разом з Ферма Паскаль є основоположником теорії ймовірностей; йому належать загальна ознака подільності будь-якого цілого числа на будь-яке інше ціле число, яка ґрунтується на знанні суми цифр числа, а також спосіб обчислення біноміальних коефіцієнтів ("Арифметичний трикутник ″); він вперше точно визначив і застосував для доведення метод повної математичної індукції

Дана курсова робота складається з 5 параграфів:

1. Конгруенції та їх основні властивості: вводяться означення конгруенції, основні властивості, основні теоремами в теорії конгруенцій - Ейлера і Ферма.

2. Ознаки подільності. В цьому параграфі розглядаються основні ознаки подільності цілих чисел, при використанні конгруенцій; метод Паскаля - загальна ознака подільності будь-якого цілого числа на будь-яке інше ціле число.

3. Перевірка арифметичних дій. В даному параграфі наведено два способи перевірки арифметичних дій: "перевірки за допомогою дев'ятки", " перевірки за допомогою одинадцяти".

4. Визначення члена цифр періоду при перетворенні звичайного дробу в десятковий. Використовуючи конгруенції можна перетворити десятковий дріб у звичайний і визначити період даного дробу.

5. Індекси. В цьому параграфі розглядають основні властивості індексів, їх загальна характеристика. Індекси по простому і складеному модулю розглядаються в окремих підпунктах.

Кожен параграф проілюстровано прикладами.

1. Конгруенції та їх основні властивості

Припустимо, що т є натуральне число; розглядатимемо цілі числа у зв'язку з остачами від ділення їх на це натуральне

яке називають модулем. Згідно з теоремою про ділення з остачею кожному числу а відповідатиме певна остача і від ділення а на т:

,
.

Якщо двом цілим числам

і
відповідає одна й та сама остача
від ділення їх на т, то вони називаються конгруентними (або порівнянними) за модулем т. Це позначається символом:

(1)

читається: а конгруентне з

за модулем т.

Деякі автори позначають це коротше:

(1')

Співвідношення (1) [або (1')] між числами називають конгруенцією, або порівнянням.

Приклади.

;
;
.

Теорема 1. Конгруентність чисел

і

за модулем
рівнозначна:

а) можливості подати а у формі

, де
- ціле;

б) подільності

-
на

.

Властивості:

1. Для конгруенції справджуються закони: рефлективності, симетричності і транзитивності, тобто відповідно:

a)

;

б) з конгруенції

випливає, що
;

в) якщо

і
, то
.

2. Конгруенції за одним і тим самим модулем можна почленно додавати (або віднімати).

Висновок 1. Доданок, що стоїть у якій-небудь частині конгруенції, можна переносити в іншу частину, змінивши знак на протилежний.

Висновок 2. Можна додати до обох частин або відняти від обох частин конгруенції одне й те саме число.

Висновок 3. До кожної частини конгруенції можна додати (або відняти від неї) довільне число, кратне модулю.

3. Конгруенції за одним і тим самим модулем можна почленно перемножати.

Висновок 1. Обидві частини конгруенції можна помножити на одне й те саме ціле число.

Висновок 2. Обидві частини конгруенції можна підносити до одного й того самого цілого невід'ємного степеня, тобто якщо.

, то
, де
- ціле
.

4. Обидві частини конгруенції можна поділити на їхній спільний дільник, якщо він взаємно простий з модулем.

5. Обидві частини конгруенції і модуль можна помножити на одне й те саме натуральне число.

6. Обидві частини конгруенції і модуль можна поділити на будь-який їхній спільний дільник.

7. Якщо конгруенція має місце за кількома модулями, то вона матиме місце і за модулем, що дорівнює їхньому найменшому спільному кратному.

теорія конгруенція ейлер ферм

8. Якщо конгруенція має місце за модулем

, то вона матиме місце і за будь-яким дільником
цього модуля.

9. Якщо одна частина конгруенції і модуль діляться на яке-небудь ціле число, то і друга частина конгруенції ділиться на це число.

10. Числа

і
, конгруентні між собою за модулем
, мають з ним один і той самий найбільший спільний дільник.

Візьмемо деяке натуральне число

, взаємно просте з модулем
, розглянемо послідовні степені
:
. Всі числа цієї нескінченної множини розподілені в
класах, отже, принаймні один з цих класів повинен містити нескінченну множину степенів
. Узявши з цього класу два степені
і позначивши їх
і
, де
, матимемо
. Оскільки з
слідує
, то
. Таким чином, для деякого
маємо
, причому оскільки
то
. Тоді і при будь-якому натуральному
матимемо
, що доводить існування нескінченної множини степенів
, що належать класу
.