1. Генеральная совокупность и выборка
В предыдущем разделе нас интересовала распределение признака в некоторой совокупности элементов. Совокупность, которая объединяет все элементы, имеющая этот признак, называется генеральный. Если признак человеческий (национальность, образование, коэффициент IQ т.п.), то генеральная совокупность — все население земли. Это очень большая совокупность, то есть число элементов в совокупности n велико. Число элементов называется объемом совокупности. Совокупности могут быть конечными и бесконечными. Генеральная совокупность – все люди хотя и очень большая, но, естественно, конечная. Генеральная совокупность – все звезды, наверное, бесконечно.
Если исследователь проводит измерение некоторой непрерывной случайной величины X, то каждый результат измерения можно считать элементом некоторой гипотетической неограниченной генеральной совокупности. В этой генеральной совокупности бесчисленная количество результатов распределены по вероятности под влиянием погрешностей в приборах, невнимательности экспериментатора, случайных помех в самом явлении и др.
Если мы проведем n повторных измерений случайной величины Х, то есть получим n конкретных различных численных значений
Естественно считать, что действительным значением измеряемой величины является среднее арифметическое от результатов
Можно проводить измерения и дискретной случайной величины.
Пусть измерение случайной величины Х представляет собой бросание правильной однородной треугольной пирамиды, на гранях которой написаны числа 1, 2, 3, 4. Дискретная, случайная величина Х имеет простое равномерное распределение:
Эксперимент можно производить неограниченное число раз. Гипотетической теоретической генеральной совокупностью является бесконечная совокупность, в которой имеются одинаковые доли (по 0.25) четырех разных элементов, обозначенных цифрами 1, 2, 3, 4. Серия из n повторных бросаний пирамиды или одновременное бросание n одинаковых пирамид можно рассматривать как выборку объема n из этой генеральной совокупности. В результате эксперимента имеем n чисел
Важнейшими числовыми характеристиками распределений являются вероятности Рi, математическое ожидание М, дисперсия D. Статистиками для вероятностей Рi являются относительные частоты
которая называется выборочным средним. Выборочная дисперсия
соответствует генеральной дисперсии D.
Относительная частота любого события
У этого распределения математическое ожидание равно 0.25 (не зависит от n), а среднее квадратическое отклонение равно
Допустим, мы выполнили
Наш результат оказался весьма маловероятным; в серии из двадцати четырех кратных бросаний он встречается примерно один раз. В биологии такой результат обычно считается практически невозможным. В этом случае у нас появится сомнение: является пирамида правильной и однородной, справедливо ли при одном бросании равенство
Чтобы разрешить сомнение, надо выполнить еще один раз четырехкратное бросание. Если снова появится результат
Нам можно было и не заниматься проверкой правильности и однородности пирамиды, а считать априори пирамиду правильной и однородной, и, следовательно, правильным выборочное распределение. Далее следует выяснить, что дает знание выборочного распределения для исследования генеральной совокупности. Но поскольку установление выборочного распределения является основной задачей статистического исследования, подробное описание экспериментов с пирамидой можно считать оправданным.
Будем считать, что выборочное распределение верное. Тогда экспериментальные значения относительной частоты
Если бы пирамида оказалась направильной и неоднородной, то выборочные распределения для различных (i=1,2,3,4) имели бы отличные математические ожидания (разные
Отметим, что полученные здесь биномиальные выборочные распределения при больших n (
Продолжим случайный эксперимент — бросание правильной, однородной, треугольной пирамиды. Случайная величина Х, связанная с этим опытом, имеет распределение. Математическое ожидание здесь равно