Пример. Определить ранг матрицы.
~ , Þ Rg = 2.Если с помощью элементарных преобразований не удается найти матрицу, эквивалентную исходной, но меньшего размера, то нахождение ранга матрицы следует начинать с вычисления миноров наивысшего возможного порядка. В вышеприведенном примере – это миноры порядка 3. Если хотя бы один из них не равен нулю, то ранг матрицы равен порядку этого минора.
Теорема. В произвольной матрице А каждый столбец (строка) является линейной комбинацией столбцов (строк), в которых расположен базисный минор.
Таким образом, ранг произвольной матрицы А равен максимальному числу линейно независимых строк (столбцов) в матрице.
Если А- квадратная матрица и detA = 0, то по крайней мере один из столбцов – линейная комбинация остальных столбцов. То же самое справедливо и для строк. Данное утверждение следует из свойства линейной зависимости при определителе равном нулю.
Матричный метод применим к решению систем уравнений, где число уравнений равно числу неизвестных.
Метод удобен для решения систем невысокого порядка.
Метод основан на применении свойств умножения матриц.
Пусть дана система уравнений:
Составим матрицы: A =
; B = ; X = .Систему уравнений можно записать: A×X = B.
Сделаем следующее преобразование: A-1×A×X = A-1×B,
т.к. А-1×А = Е, то Е×Х = А-1×В
Х = А-1×В
Для применения данного метода необходимо находить обратную матрицу, что может быть связано с вычислительными трудностями при решении систем высокого порядка.
Пример. Решить систему уравнений:
Х =
, B = , A =Найдем обратную матрицу А-1.
D = det A =
5(4-9) + 1(2 – 12) – 1(3 – 8) = -25 – 10 +5 = -30.M11 =
= -5; M21 = = 1; M31 = = -1;M12 =
M22 = M32 =M13 =
M23 = M33 = A-1 = ;Cделаем проверку:
A×A-1 =
=E.Находим матрицу Х.
Х =
= А-1В = × = .Итого решения системы: x =1; y = 2; z = 3.
Несмотря на ограничения возможности применения данного метода и сложность вычислений при больших значениях коэффициентов, а также систем высокого порядка, метод может быть легко реализован на ЭВМ.
Данный метод также применим только в случае систем линейных уравнений, где число переменных совпадает с числом уравнений. Кроме того, необходимо ввести ограничения на коэффициенты системы. Необходимо, чтобы все уравнения были линейно независимы, т.е. ни одно уравнение не являлось бы линейной комбинацией остальных.
Для этого необходимо, чтобы определитель матрицы системы не равнялся 0. det A ¹ 0;
Действительно, если какое- либо уравнение системы есть линейная комбинация остальных, то если к элементам какой- либо строки прибавить элементы другой, умноженные на какое- либо число, с помощью линейных преобразований можно получить нулевую строку. Определитель в этом случае будет равен нулю.
Теорема. Система из n уравнений с n неизвестными
в случае, если определитель матрицы системы не равен нулю, имеет единственное решение и это решение находится по формулам:
xi = Di/D, где
D = det A, а Di – определитель матрицы, получаемой из матрицы системы заменой столбца i столбцом свободных членов bi.
Di =
Пример.
A =
; D1= ; D2= ; D3= ;x1 = D1/detA; x2 = D2/detA; x3 = D3/detA;
Пример. Найти решение системы уравнений:
D =
= 5(4 – 9) + (2 – 12) – (3 – 8) = -25 – 10 + 5 = -30;D1 =
= (28 – 48) – (42 – 32) = -20 – 10 = -30.x1 = D1/D = 1;
D2 =
= 5(28 – 48) – (16 – 56) = -100 + 40 = -60.x2 = D2/D = 2;
D3 =
= 5(32 – 42) + (16 – 56) = -50 – 40 = -90.x3 = D3/D = 3.
Как видно, результат совпадает с результатом, полученным выше матричным методом.
Если система однородна, т.е. bi = 0, то при D¹0 система имеет единственное нулевое решение x1 = x2 = … = xn = 0.
При D = 0 система имеет бесконечное множество решений.
Для самостоятельного решения:
; Ответ: x = 0; y = 0; z = -2.Как было сказано выше, матричный метод и метод Крамера применимы только к тем системам линейных уравнений, в которых число неизвестных равняется числу уравнений. Далее рассмотрим произвольные системы линейных уравнений.
Определение. Система m уравнений с n неизвестными в общем виде записывается следующим образом:
,где aij – коэффициенты, а bi – постоянные. Решениями системы являются n чисел, которые при подстановке в систему превращают каждое ее уравнение в тождество.
Определение. Если система имеет хотя бы одно решение, то она называется совместной. Если система не имеет ни одного решения, то она называется несовместной.
Определение. Система называется определенной, если она имеет только одно решение и неопределенной, если более одного.
Определение. Для системы линейных уравнений матрица
А =
называется матрицей системы, а матрицаА*=
называется расширенной матрицей системыОпределение. Если b1, b2, …,bm = 0, то система называется однородной. однородная система всегда совместна, т.к. всегда имеет нулевое решение.
К элементарным преобразованиям относятся:
1)Прибавление к обеим частям одного уравнения соответствующих частей другого, умноженных на одно и то же число, не равное нулю.
2)Перестановка уравнений местами.
3)Удаление из системы уравнений, являющихся тождествами для всех х.