Смекни!
smekni.com

Зависимость высоты дерева от среднегодовой температуры (стр. 4 из 4)

для параболической регрессии

110,4797418,

где

,
– экспериментальные значения, а
– теоретическое значение функции для
.

Величина

больше у линейной регрессии, и, следовательно, вместо линейной регрессии в данном случае лучше использовать параболическую.

Теперь мы подтвердили на практике, что чем больше степень уравнения регрессии, тем точнее график. Это легко заметить на рисунках. Но трудность вычислений сильно возрастает по мере возрастания степени уравнений. Однако наметилась интересная закономерность, в уравнениях регрессий, по мере возрастания степени уравнений n, коэффициенты перед переменными в этой степени стремятся к нулю. Это позволяет сделать вывод, что построение регрессий высших степеней не дало бы нам ощутимого улучшения результата.

Вывод

В курсовой работе был проведён статистический анализ Зависимость высоты дерева от среднегодовой температуры. Были получены основные параметры данной выборки. Также были приведены различные типы графиков: диаграмма рассеивания, гистограмма, полигон частот и функция распределения. На диаграмме рассеивания наглядно была показана прямая зависимость зарплаты от количества рабочих дней в год. Нами были получены знания о методах исследования математической статистики.

Список используемой литературы

1) Гмурман В.Е. Теория вероятностей и математическая статистика. — М.: Высшая школа, 1998.

2) Кабанова Е.И. «Теория вероятностей и математическая статистика».–Дубна: Кафедра ВМ и САУ, 1996.