Авторы учебника определяют тетраэдр как поверхность, составленную из четырёх треугольников. Из теоретической базы учебника для 10 класса можно почерпнуть знания о гранях, рёбрах и вершинах тетраэдра, о построении сечений тетраэдра плоскостью, вычислении площади полной поверхности тетраэдра, в т.ч. и усечённого (глава III, § 2 «Пирамида»).
Далее рассматриваются правильные многогранники и элементы симметрии правильных многогранников. Формула нахождения объёма пирамиды приводится в заключительной главе учебника (глава VII «Объемы тел»).
Теоретический материал учебника изложен компактно и стилистически единообразно. Некоторый теоретический материал расположен в практической части учебника (доказательства некоторых теорем производится в задачах). Практический материал учебника разделён на два уровня сложности (есть т.н. «задачи повышенной трудности», отмеченные специальным символом «*»). Кроме того, в конце учебника есть задачник с задачами высокой сложности, некоторые из которых касаются тетраэдра. Рассмотрим некоторые задачи учебника.
Решение задач.
Задача 1 (№300). В правильной треугольной пирамиде DABC точки E, Fи P - середины сторон BC, ABи AD. Определите вид сечения и найдите его площадь, если сторона основания пирамиды равна a, боковое ребро равно b.
Решение.
Строим сечение плоскостью, проходящей через точки E, F, P. Проведём среднюю линию треугольника ABC, EF || AC,
EF || AC, а AC лежит в пл. DCA, значит EF || пл. DCA. Плоскость сечения пересечёт грань DCA по прямой PK.
Т.к. плоскость сечения проходит через прямую EF параллельную плоскости DCA и пересекает плоскость DCA, то линия пересечения PK параллельна прямой EF.
Построим в грани BDA отрезок FP, а в грани BDC - отрезок EK. Четырёхугольник EFOK и есть искомое сечение. EF || AC, PK || EF || AC,
, , значит .Т.к. PK || EF и PK = EF, то EFPK - параллелограмм. Таким образом, EK || EP, EP - средняя линия треугольника BCD,
.Угол между скрещивающимися прямыми DB и CA равен 90°. Докажем это. Построим высоту пирамиды DO. Точка O - центр правильного треугольника ABC. Продолжим отрезок BO до пересечения со стороной AC в точке M. В правильном треугольнике ABC: BM - высота, медиана и биссектриса, следовательно
. Имеем, что , , тогда по признаку перпендикулярности прямой и плоскости , тогда .Т.к.
, PK || CA и EK || BD, то и EFPK - прямоугольник. .Задача 2 (№692).
Основанием пирамиды является прямоугольный треугольник с катетами a и b. Каждое её боковое ребро наклонено к плоскости основания под углом φ. Найдите объём пирамиды
Решение:
ABCD - пирамида, угол ABC - прямоугольный, AC = b, BC = a, углы DAO, DBO, DCO равны . Найдем VDABC0.
1) ∆DAO=∆ADC=∆DBO по катету и острому углу, значит AO=OC=OB=R окружности, описанной около ∆ABC. Т.к. ∆ABC - прямоугольный, то
.2) Из ∆DOC:
; .3)
; ; .Изложение темы «Тетраэдр» в учебнике «Геометрия» для 7-11 классов Погорелова А.В.
В другом базовом учебнике А.В. Погорелова и др.теоретический материал в той или иной степени касающийся темы «Тетраэдр» содержится в пунктах 176-180, 186, 192, 199, 200.
В пункте 180 “Правильные многогранники” содержится определение понятия «правильный тетраэдр» (“Тетраэдр представляет собой треугольную пирамиду, у которой все рёбра равны”), доказательство некоторых свойств и теорем о пирамиде проиллюстрировано чертежами тетраэдра. Однако в данном учебном пособии акцент на изучении фигуры не ставится, и в этом смысле его информативность (касательно тетраэдра) можно оценить как низкую. Практический же материал учебника содержит удовлетворительное количество заданий, касающихся пирамиды, в основании которой расположен треугольник (что по сути и есть тетраэдр). Приведём примеры решения некоторых задач.
Решение задач.
Задача 1 (№ 41 из пункта «Многогранники»).
Основание пирамиды — равнобедренный треугольник, у которого основание равно 12 см, а боковая сторона — 10 см. Боковые грани образуют с основанием равные двугранные углы, содержащие по 45°. Найдите высоту пирамиды.
Решение:
Проведем перпендикуляр SO к плоскости основания и перпендикуляры SK, SM и SN к сторонам ΔABС. Тогда по теореме о трех перпендикулярах OK BC, ОМ АС и ON AB.
Тогда, SKO = SMO = SNO = 45° — как линейные углы данных двугранных углов. А следовательно, прямоугольные треугольники SKO, SMO иSNO равны по катету и острому углу. Так что OK=OM=ON, то есть точка О является центром окружности, вписаннойв ΔАВС.
Выразим площадь прямоугольника АВС:
(см)
С другой стороны, . Так что ; ОК=r=3 см. Так как в прямоугольном треугольнике SOK острый угол равен45°, то ΔSOK является равнобедренным и SO=OK=3(см).
Задача 2 (№ 43 из пункта «Объёмы многогранников»).
Найдите объем пирамиды, имеющий основанием треугольник, два угла которого a и β; радиус описанного круга R. Боковые ребра пирамиды наклонены к плоскости ее основания под углом γ.
Решение.
Так как все боковые ребра пирамиды наклонены к плоскости основания под одним и тем же углом, то высота пирамиды O1O проходит через центр описанной около основания окружности. Так что
Далее, в прямоугольном : .
В ΔАВС . Тогда согласно теореме синусов
.
Так что , , =
= .
Площадь треугольника :
.
Тогда .
Изложение темы «Тетраэдр» в учебнике «Геометрия» для 10-11 классов Александрова А.Д.
Рассмотрим учебное пособие Александрова А.Д. и др. «Геометрия: учебник для учащихся 11 кл. с углубленным изучением математики». Отдельных параграфов, посвящённых тетраэдру в этом учебнике нет, однако тема присутствует в виде фрагментов других параграфов.
Впервые тетраэдр упоминается в §21.3. В материале параграфа рассматривается теорема о триангуляции многогранника, в качестве примера выполняют триангуляцию выпуклой пирамиды. Само понятие «многогранник» в учебнике трактуется двумя способами, второе определение понятия напрямую связано с тетраэдром: «Многогранник – это фигура, являющаяся объединением конечного числа тетраэдров…». Познания, касающиеся правильной пирамиды и некоторых аспектов симметрии тетраэдра можно обнаружить в §23.