Смекни!
smekni.com

Избранные теоремы геометрии тетраэдра (стр. 8 из 9)

В §26.2 описано применение теоремы Эйлера («о правильных сетях») для правильных многогранников (в т.ч. для тетраэдра), а в §26.4 рассматриваются виды симметрий, характерные для этих фигур.

Формулу для нахождения объёма пирамиды авторы вводят в задаче №30.1(2), а площадь боковой поверхности пирамиды вводится в материале параграфа «Площадь поверхности конуса и цилиндра» (§32.5).

Также, в учебнике можно найти информацию о средней линии тетраэдра, центре масс (§35.5) и классе равногранных тетраэдров. Движения I и II рода демонстрируются в ходе решения задач о тетраэдрах.

Отличительная особенность учебника — высокая научность, которую авторам удалось совместить с доступным языком и чёткой структурой изложения. Приведём примеры решения некоторых задач.

Решение задач.

Задача 1.

В данную правильную треугольную усечённую пирамиду с боковым ребром a можно поместить сферу, касающуюся всех граней, и сферу, касающуюся всех рёбер. Найдите стороны оснований пирамиды.

Решение.

Изобразим на чертеже «полную» пирамиду. Данная пирамида

,
— высота «полной» пирамиды,
— ее часть до верхнего основания усеченной. Задача сводится к планиметрической, при этом не надо рисовать ни одной из данных сфер. Т.к. в усеченную пирамиду можно вписать сферу, касающуюся всех ребер, то в её боковую грань можно вписать окружность. Обозначим
,
(для удобства деления пополам) и для описанного четырехугольника
получим, что
, откуда

. (1)

Из существования вписанного шара следует, что существует полуокружность, расположенная в трапеции

(
— апофема «полной» пирамиды) так, что ее центр лежит в середине
, а сама она касается остальных трёх сторон трапеции.

— центр шара,
и
— точки касания. Тогда
. Выразим эти величину через
и
. Из
:
. Из
:
. Из трапеции
:
. Получаем уравнение:

.(2)

Решив систему уравнений (1) и (2), получим, что стороны оснований равны

.

Задача 2.

Внутри правильного тетраэдра с ребром a расположены четыре равные сферы так, что каждая сфера касается трех других сфер и трех граней тетраэдра. Найти радиус этих сфер.

Решение.

— данный тетраэдр,
— его высота,
— центры сфер,
— точка пересечения прямой
с плоскостью
. Заметим, что центры равных сфер
, касающихся плоскости
, удалены от нее на равные расстояния, каждое из которых равно радиусу шара (обозначием его как x). Значит плоскости
и
параллельны, а потому
.

Далее, каждая пара шаров касается между собой, а потому расстояние между центрами равно сумме их радиусов, то есть 2x. Имеем:

. Но
как высота правильного тетраэдра с ребром
;
как высота правильного тетраэдра с ребром 2x;
.

Осталось выразить

. Заметим, что точка
находится внутри трехгранного угла и удалена от его граней на расстояние
, а плоские углы трехгранного угла равны
. Не сложно получить то, что
. Приходим к уравнению:

, откуда после упрощений получаем
.

Изложение темы «Тетраэдр» в учебнике «Геометрия» для 10-11 классов Смирновой И.М.

Изложению темы «Тетраэдр» в учебнике для 10-11 классов гуманитарного профиля Смирновой И.М. посвящены следующие занятия: 18, 19, 21, 22, 28-30, 35.

После изучения теоремы о том, что «Всякий выпуклый многогранник может быть составлен из пирамид с общей вершиной, основания которых образуют поверхность многогранника» рассматривается теорема Эйлера для некоторых таких многогранников, в частности, выполнение условий теоремы рассмотрено и для треугольной пирамиды, которая, в сущности, и есть тетраэдр.

Учебник интересен тем, что в нём рассматривается топология и топологически правильные многогранники(тетраэдр, октаэдр, икосаэдр, куб, додекаэдр), чье существование обосновывается при помощи той же теоремы Эйлера.

Помимо этого в учебнике приведено определение понятия «правильная пирамида»; рассматриваются теоремы о существовании вписанной и описанной сфер тетраэдра, некоторые свойства симметрии, касающиеся тетраэдра. На заключительном занятии (35) приводится формула нахождения объёма треугольной пирамиды.

Для данного учебного пособия характерен большой объем иллюстративного и исторического материала, а также небольшой объём практического материала, обусловленный направленностью учебника. Рассмотрим также учебник Смирновой И.М. и др. для 10-11 классов естественно-научного профиля.

Изложение темы «Тетраэдр» в учебнике «Геометрия» для 10-11 классов Смирновой И.М. и др.

От предыдущего учебного пособия данное отличается компоновкой тем и уровнем сложности предлагаемых к решению задач. Отличительной особенностью изложения материала является деление его на «семестры», которых в учебнике четыре. Тетраэдр упоминается в самом первом параграфе («Введение в стереометрию») , понятие «пирамида» определяется в §3.

Как и в предыдущем учебнике практический материал дополнен заданиями с развёрткой стереометрических фигур. В материале §26 можно найти теорему о сфере, вписанной в тетраэдр. Остальной теоретический материал, касающийся тетраэдра, фактически совпадает с материалами учебника, охарактеризованного выше.

Решение задач.

Задача 1.

Найдите кратчайший путь по поверхности правильного тетраэдра ABCDсоединяющий точки E и F, расположенные на высотах боковых граней в 7 см от соответствующих вершин тетраэдра. Ребро тетраэдра равно 20 см.

Решение.

Рассмотрим развертку трех граней тетраэдра. Кратчайшим путем будет отрезок, соединяющий точки E и F. Его длина равна20 см.

Задача 2.

В основании пирамиды лежит прямоугольный треугольник, один из катетов которого равен 3 см, а прилежащий к нему острый угол равен 30 градусам. Все боковые ребра пирамиды наклонены к плоскости основания под углом в 60 градусов. Найдите объем пирамиды.

Решение.

Площадь треугольника ABC равна

. Основанием высоты
служит середина
. Треугольник SAC — равносторонний.
.