В.В. Сидоренков, МГТУ им. Н.Э. Баумана
На основе первичных фундаментальных соотношений электромагнетизма - закона Кулона взаимодействия неподвижных электрических точечных зарядов и закона сохранения электрического заряда цепочкой последовательных физико-математических рассуждений построена система дифференциальных уравнений Максвелла классической электродинамики.
В курсе общей физики при изложении природы электричества [1] концепция электромагнитного поля является центральной, поскольку посредством такого поля реализуется один из видов фундаментального взаимодействия разнесенных в пространстве материальных тел. Физические свойства указанного поля математически представляются системой функционально связанных между собой уравнений в частных производных первого порядка, первоначальная версия которых была получена во второй половине XIX века Дж.К. Максвеллом [2] обобщением эмпирических фактов. В структуре этих уравнений, описывающих поведение электромагнитного поля в неподвижной среде, заложена основная аксиома классической электродинамики - неразрывное единство переменных во времени электрического и магнитного полей. В современной форме такая система дифференциальных уравнений имеет следующий вид:
(a)
, (b) ,(c)
, (d) . (1)Здесь векторные поля: электрической
и магнитной напряженности, соответственно, электрической и магнитной индукции, а также плотности электрического тока ; и - абсолютные электрическая и магнитная проницаемости, - удельная электрическая проводимость материальной среды, - объемная плотность стороннего электрического заряда.Покажем, как на основе первичных фундаментальных соотношений электромагнетизма - закона Кулона взаимодействия электрических точечных неподвижных зарядов
(2)и закона сохранения электрического заряда [1]
(3)цепочкой последовательных физико-математических рассуждений можно построить систему электродинамических уравнений Максвелла (1). Представляется, что логика таких рассуждений позволит обучаемым яснее и глубже понять сущность корпускулярно-полевого дуализма природы электричества.
Фундаментальность закона Кулона (2) состоит в том, что его посредством описывается силовое взаимодействие разнесенных в пространстве неподвижных электрически заряженных материальных тел, где для изучения следствий такого взаимодействия вводят понятие электрического поля в виде напряженности – силы Кулона на единицу заряда:
, где - пробный точечный заряд. Топология структуры электрического поля точечного заряда такова, что интеграл от этой функции по сфере любого радиуса константен: , а при использовании понятия телесного угла несложно убедиться: поток вектора поля электрической индукции (смещения) через произвольную замкнутую поверхность S тождественно равен суммарному стороннему электрическому заряду в объеме внутри этой поверхности, причем на самой указанной поверхности посредством интегрирования поля электрической индукции определяется индуцируемый поляризационный электрический заряд , так что : .Такие рассуждения называют электростатической теоремой Гаусса. Она описывает результат электрической поляризации. Правда, обычно в физические подробности процесса поляризации не вникают, а потому в данной теореме о заряде
в теореме просто не говорят. Здесь надо иметь в виду, что равенство нулю суммарных величин указанных зарядов, соответственно, электрического потока: , вовсе не означает отсутствие электрического поля в этой области пространства, поскольку электрические заряды бывают положительными и отрицательными, и указанное поле может создаваться электронейтральными источниками, например, электрическими диполями. Это свойство электростатического поля качественно отличает его от ньютоновского поля тяготения, где источники такого поля – гравитирующие массы имеют один знак. В системе электродинамических дифференциальных уравнений (1) теорема Гаусса представлена (см. теорему Гаусса-Остроградского) соотношением (1b), описывающим результат электрической поляризации среды, где в случае электронейтральности ( ) среды оно имеет вид .Воспользуемся теперь другим первичным фундаментальным законом электромагнетизма - законом сохранения электрического заряда (3), структурно представляющим собой уравнение непрерывности. Закон гласит: изменение заряда в данной точке пространства
единственно возможно лишь за счет транспорта зарядов извне , ведь по определению (теорема Гаусса-Остроградского) дивергенция - это объемная плотность потока векторного поля в данной точке. Тогда подстановка в (3) уравнения (1b) дает формулу . И с учетом того, что для любого векторного поля , получаем еще одно уравнение обсуждаемой здесь системы: (1с). Это уравнение обычно называют законом полного тока: электрические токи проводимости и смещения порождают вихревое магнитное поле, силовые линии векторов напряженности которого охватывают линии этих токов.Итак, в области существования движущихся зарядов и переменных во времени электрических полей
, то есть в уравнении (1с) функция является чисто вихревой, а потому для математического уточнения данной топологии магнитного поля введем соотношение . Тем самым получим следующее уравнение системы (1) – уравнение (1d). Поскольку дивергенция - объемная плотность потока векторного поля в данной точке, то уравнение способно описать не только вихревые свойства функции , но и ее потенциальную версию, случай когда . В этой ситуации соотношение (1d) математически представляет физический результат магнитной поляризации материальной среды. Комментируя физическое содержание такого уравнения, обычно говорят, что оно наглядно иллюстрирует отсутствие в Природе сторонних магнитных зарядов, подобных зарядам электрическим, при этом, входя в противоречие, безосновательно называют теоремой Гаусса магнитного поля, хотя в рамках логики уравнений Максвелла базы для этой теоремы - магнитного закона Кулона принципиально не существует.Наконец, частным дифференцированием по времени
уравнения (1d) получаем на основе адекватное с учетом знака закону электромагнитной индукции Фарадея уравнение (1а), последнее в системе (1). Итак, изменяющееся во времени поле магнитной индукции порождает в данной точке пространства вихревое электрическое поле. Ввиду того, что в уравнении (1a) , то функция поля является вихревой, и эту топологию способно уточнить, согласно вышесказанному о дивергенции, уже полученное нами ранее уравнение (1b) в виде . Как видим, дивергентные уравнения (1b) и (1d) как математически, так и физически весьма содержательны.