Смекни!
smekni.com

Физико-математическое моделирование и анализ эффекта квантования магнитного потока (стр. 1 из 3)

В.В. Сидоренков, МГТУ им. Н.Э. Баумана

В рамках гипотезы монополя Дирака установлен магнитный заряд электрона, тождественно равный кванту магнитного потока, наблюдаемого в условиях сверхпроводимости. На этой основе сделан вывод о том, что все микрочастицы обладают в совокупности как электрическим, так и магнитным зарядами, которые в изоляции друг от друга в Природе не существуют, при этом спин микрочастиц является результатом электромагнитного взаимодействия этих собственных зарядов.

В физике известен эффект квантования магнитного потока [1] - макроскопическое квантовое явление, состоящее в том, что магнитный поток через кольцо из сверхпроводника с электрическим током может принимать лишь строго дискретные значения, кратные минимальной величине

2,07.10–15 Вб (Вебер) - кванту магнитного потока. Указанный физический феномен был предсказан в 1948 году Ф. Лондоном [2], который теоретически получил для кванта магнитного потока соотношение
, где h - постоянная Планка, е - заряд электрона. Однако позднее (1961г.) экспериментально установлено [3, 4] вдвое меньшее значение этого кванта:
, что общепринято считать объективным непосредственным подтверждением основной идеи созданной к тому времени микроскопической теории сверхпроводимости [1].

Согласно этой теории, сверхпроводящее состояние кристалла обусловлено фазовой пространственно-временной когерентностью носителей тока в виде квазичастиц Бозе-конденсата, образованных электрон-фононным взаимодействием пространственно разнесенных пар электронов проводимости (Купера эффект [1]), обладающих нулевым спином и зарядом, равным удвоенному заряду электрона. Именно пространственное парное взаимодействие электронов проводимости (куперовских пар

10-6 м) физически реализует явление сверхпроводимости, поскольку в процессе электропроводности «столкновения» отдельного электрона с ионами кристаллической решетки не способны изменить суммарного механического импульса его электронной пары (ее центра масс).

Анализ эффекта квантования магнитного потока начнем с исследования базовой в теории электричества теоремы Гаусса [5], описывающую электрическую поляризацию материальной среды, представленной как в дифференциальной

, так и в интегральной
формах. Здесь
- поле вектора электрической индукции (смещения), обусловленное откликом среды при воздействии на нее поля вектора
- электрической напряженности;
- абсолютная электрическая проницаемость,
- объемная плотность стороннего электрического заряда. Однако следует иметь в виду, что равенство нулю стороннего заряда, соответственно, его электрического потока
отнюдь не означает отсутствие электрического поля в этой области пространства, поскольку электрические заряды бывают положительными и отрицательными, и указанное поле может создаваться электронейтральными источниками, например, электрическими диполями, посредством которых реализуется процесс поляризации. Такое свойство электростатического поля качественно отличает его от ньютоновского поля тяготения, там источники этого поля – гравитирующие массы имеют лишь один знак.

Итак, уравнение

описывает поляризацию локально электронейтральной (
) среды, откуда с учетом тождества векторного анализа
получим фундаментальное следствие теоремы Гаусса:
, где
- векторный электрический потенциал. В интегральной форме это соотношение описывает функциональную связь циркуляции поля вектора
по замкнутому контуру
с потоком вектора электрической индукции
через опирающуюся на этот контур поверхность
, на которой, согласно физике явления поляризации, индуцирован порождающий это поле электрический поляризационный заряд:

, (1)

n - целые числа. Таким образом, имеем тождественную симметрию размерностей потока вектора поля электрической индукции (смещения) и электрического заряда: электрический поток -

- [
] - электрический заряд. При этом квант электрического заряда - электрон может быть тождественно представлен квантом электрического потока:
.

Полностью следуя логике вышеприведенных рассуждений при анализе связи квантов электрического заряда и потока его поля, перейдем теперь собственно к анализу эффекта квантования магнитного потока. Для этого воспользуемся соотношением, описывающим результат магнитной поляризации материальной среды

, которое часто не вполне оправдано называют теоремой Гаусса для магнитного поля, в виде его прямого математического следствия:
, где
- векторный магнитный потенциал, а
- вектор поля магнитной индукции. Интегральная форма данного соотношения описывает функциональную связь циркуляции вектора
по контуру
с потоком вектора индукции
через опирающуюся на этот контур поверхность
, на которой, согласно нашему предположению, индуцирован порождающий это магнитное поле гипотетический магнитный поляризационный заряд:

. (2)

Таким образом, имеем тождественную симметрию размерностей вектора поля магнитной индукции и поляризационного магнитного заряда (если таковой существует): магнитный поток -

- [
] - магнитный заряд. А поскольку величина кванта магнитного потока
однозначно установлена в экспериментах [3, 4], то, согласно соотношению (2), квант магнитного заряда тождественно определится квантом магнитного потока:
. В этой связи приходится констатировать, что положительные результаты экспериментов по наблюдению кванта магнитного потока в работах [3, 4] безусловно, являются физическим открытием магнитного заряда и величины его кванта.

Кстати, именно этот вопрос является центральным в настоящем исследовании. Главная здесь задача – это независимым путем аналитически доказать объективность неразрывной связи и равноправного единства сущностное разных зарядов в виде соотношения «

», полученного нами при анализе экспериментов по наблюдению эффекта квантования магнитного потока [3, 4].

Напомним, что гипотеза о возможности существования магнитного монополя - частицы, обладающей положительным или отрицательным магнитным зарядом, аналогичным электрическому заряду, была высказана П.А.М. Дираком (1931г.) с целью концептуального обоснования симметричной квантовой электродинамики, именно эту частицу и называют монополем Дирака [1, 6]. Однако монополь Дирака не только экспериментально неуловим, но и теоретические построения по этому вопросу не позволяют даже по порядку величины определить еще один важный параметр магнитного заряда – массу его носителя. Справедливости ради отметим, что и масса электрона также не устанавливается настоящими теориями, являясь экспериментальным фактом. И все же каких-либо физических законов и очевидных логических возражений против идеи существования магнитных монополей нет, а потому в течение уже многих десятилетий интерес к этой физически актуальной проблеме не ослабевает.

Вот и мы представим себе, что наряду с реально наблюдаемыми положительными и отрицательными электрическими зарядами, порождающими в пространстве электрическое кулоновское поле [5], в Природе, возможно, существуют и свободные магнитные заряды - источники магнитного поля, отвечающего закону Кулона взаимодействия неподвижных точечных зарядов. Конечно, здесь надо иметь в виду, что многолетние упорные поиски свободных магнитных зарядов остаются безуспешными, однако закон Кулона магнитного взаимодействия в эксперименте действительно наблюдается, но только для магнитных полюсов на концах длинных намагниченных спиц.