Контрольна робота з теми:
ТЕОРІЯ СПОЖИВАННЯ
Вступ
Математичні моделі й методи, що досліджуються в даній роботі, є необхідними для вивчення споживчого поводження на ринку готової продукції, переваг індивідуального споживача, корисності й класифікації товарів, еластичності й інших властивостей попиту.
1. Математичний вступ: опуклі множини
Множину
називають опуклою, якщо разом з будь-якими двома своїми точками , , вона містить і всі точки вигляду , де .Щоб пояснити геометричний зміст поняття опуклої множини, нагадаємо спосіб задання відрізка
між двома точками , в -вимірному просторі. Параметричне рівняння прямої, що проходить через точки , , має вигляд , де – напрямний вектор прямої. При , при . Коли змінюється в межах від 0 до 1, точка пробігає весь відрізок між точками і .З геометричної точки зору множина
є опуклою лише тоді, коли разом з будь-якими двома своїми точками ця множина містить і відрізок, який їх поєднує.Для двовимірного простору прикладом опуклої множини є опуклий багатогранник. У просторі при
опуклими множинами можуть бути куля, еліпсоїд, еліптичний параболоїд, циліндр і тощо.Опуклу множину, всі границі якої лінійні, називають опуклою багатогранною множиною (опуклим багатогранником).
Розглянемо властивості опуклих множин:
1. Якщо
– точки опуклої множини , то точка , де , також належить , де називають опуклою комбінацією точок . Це окремий випадок лінійної комбінації. Дану властивість приймаємо без доказу.2. Множина опуклих комбінацій будь-якої заданої кількості комбінацій з
є опуклою множиною. Доказ цієї властивості не наводимо.3. Якщо
і – опуклі множини, а точки і такі, що й , то весь відрізок знаходиться в обох множинах і , тобто перетинання опуклих множин є опуклим.Розглянемо доказ. Нехай
, де і – опуклі множини. Розглянемо дві довільні точки і множини . Оскільки , то . З опуклості множини випливає, що весь відрізок належить . Так само, . Але тоді . Доказ завершено.4. Сума двох опуклих множин опукла.
Розглянемо доказ. Нехай
, де . Тоді в і знайдуться такі елементи, що , , , . Припустимо тепер – довільне число, . Тоді5. Основною властивістю, яка характеризує опуклі множини, є так звана властивість віддільності. Для пояснення цієї властивості розглянемо на площині замкнуту опуклу множину
і точку . Тоді знайдеться така пряма , що множина і точка знаходяться по різні сторони від цієї прямої, тобто для будь-якої точки виконується нерівність , у той час, як .2. Відношення переваги
Одним з основних елементів економічної теорії є споживач або група споживачів (домашнє господарство, родина). У споживача виникає задача раціонального ведення господарства (розподілу особистого бюджету). Отже, в даній задачі споживачеві необхідно з'ясувати, яку кількість кожного наявного товару або послуг він повинен придбати при заданих цінах
і відомому доході . Будемо аналізувати поводження споживача й у підсумку сформулюємо оптимізаційну математичну модель поводження споживача на ринку товарів і послуг.Під товаром або послугою розумітимемо деяке благо, що надійшло в продаж у певний час в певному місці. Припустимо, існує кінцева кількість наявних товарів
, кількість кожного з них характеризується набором товарів , де – кількість -го товару ( ), придбана споживачем.Простором товарів назвемо невід’ємний ортант
-вимірного простору, кожна точка є певним набором товарів. Нехай – множина, на якій визначені інтереси споживача. –множина всіх уявних наборів товарів, доступних споживачеві й придатних для нього.