Если функция
Если функция
Пример.
Найти производную функции
Решение:
Функция
если
Из данного определения вытекает, что для возрастающей функции приращения аргумента и функции имеет один и тот же знак, в силу чего их отношение положительно:
Точка
min
f(х0) f(х0)
О х0–d х0 х0+d х О х0–d х0 х0+d х
точка максимума | точка минимума |
Рис. 1
Из определений точек экстремума следует, что вне d-окрестности точки экстремума поведение функции произвольно, т. е. понятия максимума и минимума функции носят характер локальных (местных), а не абсолютных понятий.
Чтобы установить признаки возрастания и убывания и признаки экстремума функций, рассмотрим ряд важных теорем математического анализа, на которые опираются все дальнейшие исследования функций.
Рекомендуется исследование функций проводить в определенной последовательности.
1. Найти область определения функции; точки разрыва и их характер; вертикальные асимптоты графика.
2. Определить возможный тип симметрии функции (четность, нечетность функции); точки пересечения графика функции с осями координат, т. е. решить уравнения
3. Найти наклонные и горизонтальные асимптоты графика функции.
4. Использовать первую производную для определения области возрастания и убывания и экстремумов функции.
5. Использовать вторую производную для определения участков выпуклости и вогнутости графика и точек перегиба.
6. Построить график функции с учетом проведенного исследования.
Пример. Провести полное исследование функции
Решение:
Проведем полное исследование функции, используя следующую схему:
Областью определения функции является множество
Так как
Функция претерпевает разрыв в точке
Найдем асимптоты графиков функции:
а). Прямая
б). Находим наклонные и горизонтальные асимптоты (горизонтальные асимптоты являются частным случаем наклонных асимптот)
где
Таким образом, прямая
Найдем точки пересечения графика функции с осями координат.
а) С осью
б) С осью
6. Исследуем функцию на возрастание, убывание и экстремум. Для этого найдем производную функции.
Из