Смекни!
smekni.com

Диференціальні рівняння першого порядку з відокремлюваними змінними, однорідні, лінійні, Бернулл (стр. 2 из 3)

(12.23)

(при цьому перший доданок зліва у (12.22) перетвориться на нуль). Зауважимо, що це не що інше, як лінійне рівняння (12.15) відносно , розв’язок якого

.

Оскільки нас цікавить лише один який-небудь ненульовий розв’язок рівняння (12.23), то в цій формулі покладемо . Тоді . При цьому рівняння (12.22) спрощується й набуває вигляду , або .

Це - диференціальне рівняння з відокремлюваними змінними. Звідси

.

Отже, згідно з (12.21) загальний розв’язок рівняння (12.14)

, (12.19а)

де - довільна стала.

Отже, розв’язки (12.19) та цього рівняння збіглися. Зауважимо, що при встановленні типу диференціального рівняння та його розв’язання слід врахувати, що не обов’язково шукається залежність виду ; можна спробувати знайти . Наприклад, диференціальне рівняння

можна подати у вигляді

звідки видно, що воно є лінійним, якщо вважати функцією, а - аргументом. Це ж саме рівняння можна записати й так:

Отже, якщо вважати функцією, а - аргументом, то дістаємо лінійне рівняння.

Розглянемо деякі приклади розв’язання лінійних диференціальних рівнянь першого порядку.

Приклад 1.Розв’язати лінійне рівняння :

а) методом варіації довільної сталої;

б) підстановкою .

Р о з в ‘ я з о к. а) Згідно з методом варіації довільної сталої спочатку розв’яжемо відповідне рівняння без правої частини:

.

Маємо , звідки або . Варіюючи сталу , .

Підставимо та як функції від у вихідне рівняння:

.

Звідси і, отже, , де - довільна стала.

Таким чином, загальний розв’язок має вигляд

.

б) Цей же самий результат отримаємо, застосувавши до початкового рівняння підстановку :

або .

Знайдемо з рівняння . Відокремимо змінні: , звідки . Запишемо рівняння відносно , звідси . Отже загальний розв’язок (довільна стала ) збігається як слід було чекати, із розв’язком, знайденим раніше.

Приклад 2. При відстоюванні суспензії має місце повільне осідання твердих частинок під дією сили ваги , якщо опір середовища пропорційний швидкості осідання частинок, що осідають в рідині без початкової швидкості.

Р о з в ’ я з о к. Згідно з законом Ньютона, де маса частинки; швидкість її руху; час; сила дії на частинку. Враховуючи умову задачі, маємо , де вага частинки; сила опору; коефіцієнт пропорційності. Отже, відносно швидкості руху дістаємо рівняння

,

або , причому .

Це лінійне диференціальне рівняння першого порядку. Щоб знайти його частинний розв’язок, що задовольняє початковій умові , спочатку відшукаємо загальний розв’язок рівняння. Використаємо метод варіації довільної сталої. Відповідне однорідне рівняння має вигляд

.

Після відокремлювання змінних та інтегрування отримаємо

, звідки .

Щоб знайти загальний розв’язок рівняння з правою частиною, вважаємо, що в останній рівності .

Тоді ,

і відносно одержується, згідно з умовою, таке рівняння:

,або.

Звідси ,

де довільна стала. Інтегруючи, маємо

.

Тоді загальний розв’язок рівняння набуває вигляду

,або .

Поклавши тут і , знайдемо, що .

Отже, частинний розв’язок поставленої задачі матиме вигляд

.

Приклад 3. З фізики відома залежність між силою стуму та електрорушійною силою в колі, яке має опір та самоіндукцію ( та - сталі):

.

Якщо , то це рівняння повністю збігається з диференціальним рівнянням, розглянутим у прикладі 2, хоч описувані процеси зовсім різні.

Нехай . Тоді відносно маємо диференціальне рівняння, яке зручно записати у вигляді

.

Знайдемо загальний розв’язок цього лінійного рівняння. Нехай , де та - невідомі функції. Тоді Після підстановки в рівняння та маємо:

або .

Невідому функцію знайдемо з рівняння

,звідки . Величина визначається з рівності ,

звідки

,

де довільна стала. Позначимо інтеграл, що фігурує справа, через : . Інтегруючи двічі частинами, отримаємо

,

а функцію визначимо за допомогою рівності

.

Отже, сила струму визначається виразом

.

12.5. Рівняння Бернуллі

Диференціальне рівняння виду

, (12.24)

в якому неперервні функції, а число відмінне від

нуля та одиниці, називається рівнянням Бернуллі(при

маємо лінійне рівняння, а при - рівняння з відокремлюваними

змінними).

Покажемо, що рівняння Бернуллі зводиться до лінійного диференціального рівняння першого порядку. Для цього поділимо ліву й праву частини рівняння (12.24) на :

та виконаємо заміну змінної . Оскільки

,

диференціальне рівняння Бернуллі перетворюється на рівняння

яке є лінійним. Проінтегрувавши його одним з описаних раніше способів і повернувшись від до попередньої змінної, можна отримати розв’язок рівняння Бернуллі.

Зауважимо, що зручніше розв’язувати рівняння Бернуллі, не зводячи його до лінійного, за допомогою підстановки , тобто так само, як і лінійне неоднорідне рівняння.

Покажемо це на прикладі.

Приклад .Розв’язати рівняння Бернуллі

.

Р о з в ’ я з о к. Будемо шукати невідому функцію у вигляді.. Підстановка цієї функції у рівняння приводить до рівності або

.

Функцію знайдемо із співвідношення , яке отримується, якщо вираз у дужках прирівняти до нуля: . Відносно отримується рівняння з відокремлюваними змінними

, загальний інтеграл якого буде таким:

,

де довільна стала. Отже, відповідь

.

12.6. Рівняння в повних диференціалах.

Інтегруючий множник

Означення. Диференціальне рівняння вигляду

(12.25)

називається рівнянням у повних диференціалах, якщо - неперервні диференційовані функції, для яких

виконується співвідношення

, (12.26)

причому та - також неперервні функції.

Покажемо, що коли ліва частина рівняння (12.25) є повним диференціалом деякої функції , то виконується умова (12.26), і навпаки, з виконання умови (12.25) випливає, що ліва частина рівняння (12.25) – повний диференціал (вперше цю умову отримав член Петербурзької академії наук Л.Ейлер (1707-1783)).

Справді, нехай зліва у рівнянні (12.25) стоїть повний диференціал, тобто .

Оскільки

,

маємо

Тоді частинні похідні та визначаються за формулами

.

Оскільки зліва в цих рівностях згідно з умовою записані неперервні функції, то це означає, що й праві частини, тобто та

, також неперервні. Звідси випливає, що , що й доводить рівність (12.26).

Припустимо тепер, що умова (12.26) виконується, і знайдемо функцію , завдяки якій диференціальне рівняння (12.25) можна подати у формі

(12.27)

Оскільки , то інтегруючи, маємо

(12.28)

де - абсциса будь-якої точки в області існування розв’язку, а - поки що невідома функція, яка залежить лише від . Знайдемо похідну , користуючись формулою (12.28):

(12.29)

Враховуючи, що і користуючись умовою (12.26) для заміни підінтегральної функції, з (12.29) отримуємо

.

Отже, або

.

Звідси , або ,

де - довільна стала. Підставляючи знайдену функцію у вираз (12.28), отримаємо

.

Це дозволяє записати загальний розв’язок рівняння (12.25) (або те ж саме рівняння (12.27)) у вигляді:

- довільна стала.

Зауваження. На практиці зручніше продиференціювати

рівність (12.28) за , потім замінити відомою функцією , а далі – визначити та .

Приклад . Розв’язати рівняння

Р о з в ’ я з о к. Позначимо

і переконаємося, що це – рівняння в повних диференціалах. Справді, частинні похідні і рівні між собою:

Отже, умова (12.26) виконується. Для знаходження функції про інтегруємо рівність .

Маємо .

Звідси визначимо похідну: та прирівняємо її до відомої функції :

.

Отже, і, ,

де - довільна стала.

Функцію знайдено:

.

Загальний інтеграл рівняння має вигляд .

Розглянемо питання про можливість зведення рівняння виду (12.25), для якого не виконується умова (12.26), до рівняння в повних диференціалах. Домножимо обидві частини рівняння (12.25) на деяку функцію таку, що рівняння

(12.30)

буде рівнянням у повних диференціалах. Згідно з доведеним для цього необхідно і достатньо, щоб виконувалась рівність, аналогічна рівності (12.26):

,

або

.

Зведемо подібні члени

.

Поділивши обидві частини цього рівняння на та врахувавши, що , отримаємо

(12.31)

Це рівняння в частинних похідних відносно . Розв’язати його – це завдання не простіше, ніж інтегрування вихідного рівняння. Розглянемо два частинні випадки, коли рівняння (12.31) спрощується і його можна розв’язати.

1) Нехай шуканий інтегральний множник залежить лише від : .

Тоді , і рівняння (12.31) набуває вигляду

(12.32)

Якщо права частина цього рівняння не залежить від , то воно легко інтегрується.