(12.23)
(при цьому перший доданок зліва у (12.22) перетвориться на нуль). Зауважимо, що це не що інше, як лінійне рівняння (12.15) відносно , розв’язок якого
.
Оскільки нас цікавить лише один який-небудь ненульовий розв’язок рівняння (12.23), то в цій формулі покладемо . Тоді . При цьому рівняння (12.22) спрощується й набуває вигляду , або .
Це - диференціальне рівняння з відокремлюваними змінними. Звідси
.
Отже, згідно з (12.21) загальний розв’язок рівняння (12.14)
, (12.19а)
де - довільна стала.
Отже, розв’язки (12.19) та цього рівняння збіглися. Зауважимо, що при встановленні типу диференціального рівняння та його розв’язання слід врахувати, що не обов’язково шукається залежність виду ; можна спробувати знайти . Наприклад, диференціальне рівняння
можна подати у вигляді
звідки видно, що воно є лінійним, якщо вважати функцією, а - аргументом. Це ж саме рівняння можна записати й так:
Отже, якщо вважати функцією, а - аргументом, то дістаємо лінійне рівняння.
Розглянемо деякі приклади розв’язання лінійних диференціальних рівнянь першого порядку.
Приклад 1.Розв’язати лінійне рівняння :
а) методом варіації довільної сталої;
б) підстановкою .
Р о з в ‘ я з о к. а) Згідно з методом варіації довільної сталої спочатку розв’яжемо відповідне рівняння без правої частини:
.
Маємо , звідки або . Варіюючи сталу , .
Підставимо та як функції від у вихідне рівняння:
.
Звідси і, отже, , де - довільна стала.
Таким чином, загальний розв’язок має вигляд
.
б) Цей же самий результат отримаємо, застосувавши до початкового рівняння підстановку :
або .
Знайдемо з рівняння . Відокремимо змінні: , звідки . Запишемо рівняння відносно , звідси . Отже загальний розв’язок (довільна стала ) збігається як слід було чекати, із розв’язком, знайденим раніше.
Приклад 2. При відстоюванні суспензії має місце повільне осідання твердих частинок під дією сили ваги , якщо опір середовища пропорційний швидкості осідання частинок, що осідають в рідині без початкової швидкості.
Р о з в ’ я з о к. Згідно з законом Ньютона, де маса частинки; швидкість її руху; час; сила дії на частинку. Враховуючи умову задачі, маємо , де вага частинки; сила опору; коефіцієнт пропорційності. Отже, відносно швидкості руху дістаємо рівняння
,
або , причому .
Це лінійне диференціальне рівняння першого порядку. Щоб знайти його частинний розв’язок, що задовольняє початковій умові , спочатку відшукаємо загальний розв’язок рівняння. Використаємо метод варіації довільної сталої. Відповідне однорідне рівняння має вигляд
.
Після відокремлювання змінних та інтегрування отримаємо
, звідки .
Щоб знайти загальний розв’язок рівняння з правою частиною, вважаємо, що в останній рівності .
Тоді ,
і відносно одержується, згідно з умовою, таке рівняння:
,або.
Звідси ,
де довільна стала. Інтегруючи, маємо
.
Тоді загальний розв’язок рівняння набуває вигляду
,або .
Поклавши тут і , знайдемо, що .
Отже, частинний розв’язок поставленої задачі матиме вигляд
.
Приклад 3. З фізики відома залежність між силою стуму та електрорушійною силою в колі, яке має опір та самоіндукцію ( та - сталі):
.
Якщо , то це рівняння повністю збігається з диференціальним рівнянням, розглянутим у прикладі 2, хоч описувані процеси зовсім різні.
Нехай . Тоді відносно маємо диференціальне рівняння, яке зручно записати у вигляді
.
Знайдемо загальний розв’язок цього лінійного рівняння. Нехай , де та - невідомі функції. Тоді Після підстановки в рівняння та маємо:
або .
Невідому функцію знайдемо з рівняння
,звідки . Величина визначається з рівності ,
звідки
,
де довільна стала. Позначимо інтеграл, що фігурує справа, через : . Інтегруючи двічі частинами, отримаємо
,
а функцію визначимо за допомогою рівності
.
Отже, сила струму визначається виразом
.
12.5. Рівняння Бернуллі
Диференціальне рівняння виду
, (12.24)
в якому неперервні функції, а число відмінне від
нуля та одиниці, називається рівнянням Бернуллі(при
маємо лінійне рівняння, а при - рівняння з відокремлюваними
змінними).
Покажемо, що рівняння Бернуллі зводиться до лінійного диференціального рівняння першого порядку. Для цього поділимо ліву й праву частини рівняння (12.24) на :
та виконаємо заміну змінної . Оскільки
,
диференціальне рівняння Бернуллі перетворюється на рівняння
яке є лінійним. Проінтегрувавши його одним з описаних раніше способів і повернувшись від до попередньої змінної, можна отримати розв’язок рівняння Бернуллі.
Зауважимо, що зручніше розв’язувати рівняння Бернуллі, не зводячи його до лінійного, за допомогою підстановки , тобто так само, як і лінійне неоднорідне рівняння.
Покажемо це на прикладі.
Приклад .Розв’язати рівняння Бернуллі
.
Р о з в ’ я з о к. Будемо шукати невідому функцію у вигляді.. Підстановка цієї функції у рівняння приводить до рівності або
.
Функцію знайдемо із співвідношення , яке отримується, якщо вираз у дужках прирівняти до нуля: . Відносно отримується рівняння з відокремлюваними змінними
, загальний інтеграл якого буде таким:
,
де довільна стала. Отже, відповідь
.
12.6. Рівняння в повних диференціалах.
Інтегруючий множник
Означення. Диференціальне рівняння вигляду
(12.25)
називається рівнянням у повних диференціалах, якщо - неперервні диференційовані функції, для яких
виконується співвідношення
, (12.26)
причому та - також неперервні функції.
Покажемо, що коли ліва частина рівняння (12.25) є повним диференціалом деякої функції , то виконується умова (12.26), і навпаки, з виконання умови (12.25) випливає, що ліва частина рівняння (12.25) – повний диференціал (вперше цю умову отримав член Петербурзької академії наук Л.Ейлер (1707-1783)).
Справді, нехай зліва у рівнянні (12.25) стоїть повний диференціал, тобто .
Оскільки
,
маємо
Тоді частинні похідні та визначаються за формулами
.
Оскільки зліва в цих рівностях згідно з умовою записані неперервні функції, то це означає, що й праві частини, тобто та
, також неперервні. Звідси випливає, що , що й доводить рівність (12.26).
Припустимо тепер, що умова (12.26) виконується, і знайдемо функцію , завдяки якій диференціальне рівняння (12.25) можна подати у формі
(12.27)
Оскільки , то інтегруючи, маємо
(12.28)
де - абсциса будь-якої точки в області існування розв’язку, а - поки що невідома функція, яка залежить лише від . Знайдемо похідну , користуючись формулою (12.28):
(12.29)
Враховуючи, що і користуючись умовою (12.26) для заміни підінтегральної функції, з (12.29) отримуємо
.
Отже, або
.
Звідси , або ,
де - довільна стала. Підставляючи знайдену функцію у вираз (12.28), отримаємо
.
Це дозволяє записати загальний розв’язок рівняння (12.25) (або те ж саме рівняння (12.27)) у вигляді:
- довільна стала.
Зауваження. На практиці зручніше продиференціювати
рівність (12.28) за , потім замінити відомою функцією , а далі – визначити та .
Приклад . Розв’язати рівняння
Р о з в ’ я з о к. Позначимо
і переконаємося, що це – рівняння в повних диференціалах. Справді, частинні похідні і рівні між собою:
Отже, умова (12.26) виконується. Для знаходження функції про інтегруємо рівність .
Маємо .
Звідси визначимо похідну: та прирівняємо її до відомої функції :
.
Отже, і, ,
де - довільна стала.
Функцію знайдено:
.
Загальний інтеграл рівняння має вигляд .
Розглянемо питання про можливість зведення рівняння виду (12.25), для якого не виконується умова (12.26), до рівняння в повних диференціалах. Домножимо обидві частини рівняння (12.25) на деяку функцію таку, що рівняння
(12.30)
буде рівнянням у повних диференціалах. Згідно з доведеним для цього необхідно і достатньо, щоб виконувалась рівність, аналогічна рівності (12.26):
,
або
.
Зведемо подібні члени
.
Поділивши обидві частини цього рівняння на та врахувавши, що , отримаємо
(12.31)
Це рівняння в частинних похідних відносно . Розв’язати його – це завдання не простіше, ніж інтегрування вихідного рівняння. Розглянемо два частинні випадки, коли рівняння (12.31) спрощується і його можна розв’язати.
1) Нехай шуканий інтегральний множник залежить лише від : .
Тоді , і рівняння (12.31) набуває вигляду
(12.32)
Якщо права частина цього рівняння не залежить від , то воно легко інтегрується.