Смекни!
smekni.com

Алгебраическая проблема собственных значений (стр. 4 из 4)

X1 * * * *
x2 * * * *
x3 * * *
* * *
* * *
* *
0 *
*

где блоки Хm, представляют собой матрицы размерности 2 х 2, расположенные на главной диагонали. Собственные значения блоков Хm, являются в то же время собственными значениями исходной матрицы размерности пx п. Такая форма удобна, так как детерминант второго порядка блоков Хm позволяет опреде­лять комплексные собственные значения, не вводя комплексных элементов в окончательную матрицу. Если все собственные зна­чения исходной матрицы действительные, то в окончательном виде она будет треугольной, причем собственные значения будут расположены на диагонали.

Метод LR

Этот метод первоначально был разработан Рутисхаузером в 1958 г. Метод основан на представлении матрицы A в виде про­изведения

А = LR,

где L — левая треугольная матрица с единичными диагональ­ными элементами, а R — правая треугольная. Применяя преоб­разование подобия L-1 A R, видим, что,

A2 = L-1 A R = L-1 (RL)L = R L.

Следовательно,

Am-1 = L m-1 Rm-1,

Am = R m-1 Lm-1.

Этот процесс повторяется до тех пор, пока Ls не превратится в единичную матрицу Е, а Rs не приобретет квазидиагональную форму. Хотя этот метод очень удобен, он не всегда устойчив. Поэтому предпочтение часто отдают другому методу.

Метод QR

Метод QR. предложен Фрэнсисом в 1961 г. Соответствующий ему алгоритм определяется соотношением

Am = Q m Rm.

где Q m — ортогональная матрица, а Rm — верхняя треугольная матрица. При использовании метода последовательно получаем

Am+1 = QmTAm Qm = QmTQm Rm Qm = Rm Qm.

В пределе последовательность матриц А стремится к квазидиа­гональной форме. Этот метод сложнее предыдущего и требует больших затрат машинного времени. Однако его устойчивость,обусловленная использованием ортогональных преобразующих матриц, обеспечила ему прочную репутацию лучшего метода решения задач самой общей формы.

Пример 3

Пусть требуется найти все собственные значения произвольной матрицы размерности 6 x 6

2,3 4,3 5,6 3,2 1,4 2,2
1,4 2,4 5,7 8,4 3,4 5,2
2,5 6,5 4,2 7,1 4,7 9,3
3,8 5,7 2,9 1,6 2,5 7,9
2,4 5,4 3,7 6,2 3,9 1,8
1,8 1,7 3,9 4,6 5,7 5,9

Сделаем это в два приема, приведя сначала матрицу с помощью преобразова­ния подобия к виду Гсссенберга, затем с помощью разновидности метода QRнайдем собственные значения. В приведенной ниже программе использованы две подпрограммы из пакета программ для научных исследований фирмы IВМ. Подпрограмма НSВС преобразует матрицу размерности 6 x 6 к форме Гессенберга, а подпрограмма АТЕIG позволяет найти собственные значения.

{**********************************************************************}

Программа определение всех собственных значений произвольной матрицы размерности 6х5. Используются подпрограммы НSВСи АТЕIG из пакета программ для научных исследований фирмы IBM

{**********************************************************************}

DIMENSION A(6,6),RR(6),RI(6),IANA(6)

READ(5,100)((A(I,J),J=1,6),I=1,6)

WRITE(6,104)

104 FORMAT(///lX,’THE ORIGINAL MATRIX IS AS FOLLOWS’)

WRITE(6,103)

103 FORMAT(1X,65(-'--'))

WRITE(6,101)((A(I,J),J=1,6),I=1,6)

WRITE(6,103)

101FORMAT(6(1X,F10.5))

100 FORMAT(6F10.5)

CALL HSBG(6,A,6)

WRITE(6,105)

105 FORMAT(///1X,'THE MATRIX W HESSENBUR5 FORM IS') WRITE(6,103)

WRITE(6,101)((A(I,J),J=1,6),I=1,6)

WRITE(6,103)

CALL ATEIG(6,A,RR,RI,IANA,6)

WRITE(6,106)

106FORHAT(///1X,'THE EIGENVALUES ARE AS FOLLOUS')

WRITE(6,107)

107 FORMAT (1X, 23(‘-‘),/,4X,’REAL',12X,’IMAG’,/,23(‘-‘))

WRITE(6,102)(RR(I),PKI),I=1,6)

WRITE(6,108)

108 FORMAT(1X,23(‘-‘))

FORMAT<2(2X,F10.5)»

STOP

END

Результат получаем в виде

Исходная матрица имеет вид

2.30000 4.30000 5.60000 3.20000 1,40000 2.20000
1.40000 2.40000 5.70000 8.40000 3.40000 5.20000
2.50000 6.50000 4.20000 7.10000 4.70000 9.30000
3.80000 5.70000 2.90000 1.60000 2.50000 7.90000
2.40000 5.40000 3.70000 6.20000 3.90000 1.80000
1.80000 1.70000 3.90000 4.60000 5.70000 5.90000

Матрица в форме Гессенберга.

-1.13162 3.20402 -0, -0.05631 3.88246 1.40000 2.20000
-0.75823 0.07468 0, 0.48742 6.97388 5.37А35 10.36283
0. 1.13783 -2, -2.63803 10.18618 7.15297 17.06242
0. 0. 3.35891 7. 50550 7.09754 13.92154
0. 0. 0. 13.36279 10.58947 16.78421
0. 0. 0. 0. 5.70000 5.90000

Собственные значения

-----------------------------------

Действит. Миним.

-----------------------------------

25.52757 0.
-5.63130 0.
0.88433 3.44455
0.88433 -3.44455
-0.68247 1.56596
-0.68247 -1.56596

7. ВЫБОР АЛГОРИТМА РЕШЕНИЯ ЗАДАЧ НА СОБСТВЕННЫЕ ЗНАЧЕНИЯ

Выбор подходящего алгоритма для решения той или иной за­дачи на собственные значения определяется типом собственных значений, типом матрицы и числом искомых собственных зна­чений. Чем сложнее задача, тем меньше число алгоритмов, из которых можно выбирать. Таблица 1 позволяет облегчить этот выбор. Обычно пакеты математического обеспечения ЭВМ со­держат подпрограммы, в которых используются все эти алгорит­мы или некоторые из них. Одним из эффективных способов ис­пользования имеющегося математического обеспечения является одновременное применение двух подпрограмм, позволяющее совместить их лучшие качества. Например, имея матрицу общего вида, можно методом Хаусхолдера свести ее к виду Гессенберга, а затем с помощью алгоритма QR найти собственные значения. При этом будут использованы как быстрота, обеспечиваемая ме­тодом Хаусхолдера, так и универсальность алгоритма QR.


Таблица 1 Выбор алгоритма решения задачи на собственные значения

Название алгоритма

Применяет­ся для

Результат

Рекомендуется для

отыскания собственных значений

Примечание
Наибольшего или наименьшего Всех <=6 Всех >=6
Определитель (итерация) Матриц общего вида Собственные значения * Требует нахождения корней полинома общего вида

Итерация

(итерация)

То же

Собственныезначения и собственные векторы

*

*

*

Обеспечивает наилучшуюточность для наибольшего и наименьшего собственных значений
Метод Якоби (преобразо­вание) Симмет­ричных матриц Диагональ­ная форма матрицы

*

*

Теоретически требует бесконечного числа шагов

Метод Гивенса

(преобразо­вание)

То же

Трехдииональльная форма матрицы

*

*

Требует знания корней простого полинома
Несиммет­ричныхматриц Форма Гессенберга

*

*

Требует применения дополнительного метода
Метод Хаусхолдера (преобразова­ние) Симмет­ричных матриц Трехдиаго­нальная форма матрицы

*

*

Требует знания корней простого полинома
Метод Хаусхолдера (преобразова­ние) Несиммет­ричных матриц Форма Гессенберга * * Требует применения дополнительного метода
Метод LR (преобразо­вание) Матриц общего вида Квазидиаго­нальная форма матрицы

*

*

Бывает неустойчив
Метод QR (преобразова­ние)

То же

То же

*

*

Лучший метод, облада­ющий наибольшейобщностью