ГОУ ВПО
Уральский государственный
горный университет
Кафедра автоматики и компьютерных технологий
КУРСОВАЯ РАБОТА
ПО ДИСЦИПЛИНЕ:
«ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ»
Студент______________________________________******
Группа_______________________________________******
Вариант______________________________________156
Проверил_____________________________________ Барановский В.П.
Екатеринбург,2010 г.
Вариант №156
Для автоматической системы, алгоритмическая схема которой приведена на рисунке 1, выполнить следующие расчеты:
1. При заданных параметрах линейной системы :
kо = 0,6 | koz=0,3 |
То = Тоz= 1,6 с | kи = 0,35 |
Ти = 0,35 с | kу = 20 |
Ту = 1,2 с | kп = 1,1 |
оценить точность в установившемся режиме по каналу хз-ε при типовом воздействии ао = 7.
При неудовлетворительной точности выбрать значение передаточного коэффициента ky, обеспечивающее требуемое значение сигнала ошибки εз ≤0,5.
2. С помощью критерия Михайлова проверить устойчивость линейной системы при заданных и выбранных параметрах.
3. По требуемым показателям качества в переходном режиме σ = 35%; tп = 2 с; М = 1,6 определить структуру и параметры корректирующего устройства.
4. Методом D-разбиения построить область устойчивости по параметрам kи и То для скорректированной системы.
5. На АВМ и ЦВМ получить график переходного процесса по каналу хз-ε и сравнить полученные показатели качества с требуемыми.
6. Для замкнутой скорректированной системы вычислить квадратичную интегральную оценку по каналу хз-ε и определить оптимальное значение коэффициента ky.
7. Дня замкнутой скорректированной системы вычислить суммарную дисперсию сигнала ошибки при случайных воздействиях с параметрами DХз =60; αХз = 0,1; Sgo = 120 и оптимальное значение ку .
8. Методом фазовых траекторий на АВМ проанализировать возможность возникновения автоколебаний в нескорректированной системе с нелинейным элементом НЭ с параметрами с = 1, b = 1. Определить амплитуду и частоту автоколебаний, оценить влияние параметров нелинейного элемента на амплитуду и частоту автоколебаний.
Дата выдачи заданияПодпись руководителя
Содержание
1.Оценка точности в установившемся режиме. 4
2.Проверка устойчивости исходной системы.. 6
3.Расчет корректирующего устройства. 9
4Построение области устойчивости скорректированной системы.. 13
5.Построение графика переходного процесса и оценка качества. 16
скорректированной системы.. 16
5.1Моделирование системы на АВМ... 16
5.2Моделирование системы на ЦВМ... 18
6.Вычисление и минимизация квадратичной интегральной оценки. 21
7.Вычисление и минимизация дисперсии сигнала ошибки при случайных воздействиях. 24
8.Анализ нелинейной системы.. 30
9. Заключение………………………………………………………………………………………………34
10. Список литературы……………………………………………………………………………………35
1. Оценка точности в установившемся режиме
В данном разделе необходимо оценить точность заданной системы управления (рисунок 1). Данная система управления является статической, поэтому её статическая точность оценивается при ступенчатом воздействии.
Запишем передаточную функцию замкнутой системы по каналу хз-ε .
Подставим значения передаточных функций в выражение передаточной функции замкнутой системы:
Запишем теорему Лапласа о конечном значении оригинала для сигнала ошибки:
Подставим значения функции замкнутой системы и сигнал задания :
Вычисляем значение сигнала ошибки ε(t) в установившемся режиме:
ε(∞) ≥ εз = 0,5
Точность системы не удовлетворяет заданной точности εз , вычисляется новое значение передаточного коэффициента управляющего устройства kу , которое позволит обеспечить в системе требуемое значение сигнала ошибки. Запишем выражение для сигнала статической ошибки в общем виде, из которого выразим коэффициент kу .
Новое значение коэффициента kу позволяет обеспечить заданную точность системы по каналу хз-ε.
Вывод: Заданный коэффициент kУ=20 не обеспечивает достаточную точность системы в установившемся режиме, поэтому в данном разделе было вычислено новое значение коэффициента kУ=56,3, позволяющее обеспечить заданную точность системы по каналу ошибки хз-ε в установившемся режиме ε(∞)≤εз = 0,5 .
2. Проверка устойчивости исходной системы
В данном разделе производится проверка устойчивости системы по критерию Михайлова. Данный критерий основан на анализе характеристического уравнения системы. Исходным выражением для определения устойчивости берем характеристическое уравнение замкнутого контура. Проверка устойчивости проводится с новым, большим передаточным коэффициентом управляющего устройства kу = 56,3.
1+Wрк(р)=0
Приравняв правую часть характеристического уравнения системы к F(p), получаем характеристический полином системы:
Раскрываем скобки, подставляем все коэффициенты и постоянные времени системы и заменяем р на jω (kрк=13):
Разделим характеристический полином на действительную и мнимую части:
Задаваясь численными значениями ω, вычисляем значения мнимой и действительной части характеристического полинома системы. Результаты вычислений приведены в таблице 1. Годограф Михайлова приведен на рисунке 2.
Таблица 1. – Расчетные данные для построения годографа Михайлова
ω | P(ω) | Q(ω) |
0 | 14 | 0 |
0,1 | 13,9 | 0,3 |
0,2 | 13,8 | 0,6 |
0,3 | 13,7 | 0,9 |
0,4 | 13,5 | 1,2 |
0,5 | 13,2 | 1,4 |
0,6 | 12,9 | 1,7 |
0,7 | 12,5 | 1,9 |
0,8 | 12,1 | 2,1 |
0,9 | 11,6 | 2,3 |
1 | 11,1 | 2,4 |
1,1 | 10,4 | 2,5 |
1,2 | 9,8 | 2,6 |
1,3 | 9,0 | 2,6 |
1,4 | 8,3 | 2,5 |
1,5 | 7,4 | 2,4 |
1,6 | 6,5 | 2,2 |
1,7 | 5,6 | 2 |
1,8 | 4,6 | 1,7 |
1,9 | 3,5 | 1,3 |
2 | 2,4 | 0,9 |
2,1 | 1,2 | 0,3 |
2,1651 | 0,4 | 0 |
2,1972 | 0 | -0,2 |
2,3 | -1,3 | -0,9 |
2,4 | -2,7 | -1,7 |
2,5 | -4,1 | -2,6 |
∞ | -∞ | -∞ |
Рис. 2 – Годограф Михайлова нескорректированной системы
Формулировка критерия Михайлова
Система n-ого порядка будет устойчивой, если при изменении частоты ω от 0 до ∞ характеристическая кривая F(jω) пройдет в положительном направлении (против часовой стрелки) последовательно, не обращаясь в 0 π/2∙nквадрантов.
Исходя из формулировки критерия и вида получившейся характеристической кривой, можно сделать вывод, что данная система не устойчива, так как кривая, начинаясь в первом квадранте переходит сразу в четвертый, а затем в третий.
Следствие из критерия Михайлова
Система устойчива, если действительная и мнимая часть характеристической функции F(jω) обращаются в нуль поочередно, т.е. если корни уравнений P(ω)=0 Q(ω)=0 перемежаются.